CONSUMPTION AND ASSET PRICES
WITH RECURSIVE PREFERENCES

MARK FISHER AND CHRISTIAN GILLES

ABSTRACT. We analyze consumption and asset pricing with recursive preferences
given by Kreps—Porteus stochastic differential utility (K-P SDU). We show that
utility depends on two state variables: current consumption and a second variable
(related to the wealth—consumption ratio) that captures all information about fu-
ture opportunities. This representation of utility reduces the internal consistency
condition for K—P SDU to a restriction on the second variable in terms of the dy-
namics of a forcing process (consumption, the state—price deflator, or the return
on the market portfolio). Solving the model for () optimal consumption, (i) the
optimal portfolio, and (i4) asset prices in general equilibrium amounts to finding
the process for the second variable that satisfies this restriction. We show that
the wealth—consumption ratio is the value of an annuity when the numeraire is
changed from units of the consumption good to units of the consumption process,
and we characterize certain features of the solution in a non-Markovian setting.
In a Markovian setting, we provide a solution method that it quite general and
can be used to produce fast, accurate numerical solutions that converge to the
Taylor expansion.

1. INTRODUCTION

We solve for the dynamics of consumption, investment, and asset prices in a
general-equilibrium, continuous-time stochastic model with a representative agent
who has recursive preferences. The setting varies and determines what the main
problem is. In an endowment economy, the dynamics of consumption is given and
we solve for asset prices (the exchange problem); in a partial equilibrium setting,
prices are given and we solve for the optimal consumption and investment plan (the
planning problem); in a production economy, a set of linear technologies is given and
we solve for consumption, investment and asset prices (the production problem). By
focusing on the consumption—wealth ratio, we find that these three problems are
essentially equivalent, and we solve them all at once.
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The recursive utility framework generalizes the standard time-separable power
utility model, allowing the separation of risk aversion and intertemporal substi-
tution. This framework was introduced by Epstein and Zin (1989), who analyze
recursive preferences in a discrete-time setting, and Duffie and Epstein (1992b),
who develop a continuous-time formulation of Epstein and Zin’s class of recursive
utility called stochastic differential utility. We use a martingale approach to solve
for the equilibrium, along the lines of Duffie and Skiadas (1994), who show that the
first-order condition for optimality is equivalent to the absence-of-arbitrage condi-
tions for asset prices—namely, that asset prices deflated by the state-price deflator
are martingales. In addition, they provide a representation for the state-price defla-
tor for the Kreps—Porteus stochastic differential utility (K-P SDU) that we adopt
here.

We find that utility depends on two state variables: current consumption and
a second variable (the growth variable) that captures all information about future
opportunities. This representation of utility depends on the homotheticity of K-
P SDU, and holds for the exchange problem as well as in economies with linear
investment opportunities (covering both the case of the planning problem and that
of the production problem). Equilibrium in the model reduces to a central restriction
on the growth variable in terms of the dynamics of a forcing process. This forcing
process can be either consumption (for the exchange problem), the real state—price
deflator (for the planning problem), the return on the market portfolio (for the
production problem), or something entirely different (for example, the state-price
deflator expressed in an arbitrary numeraire). Solving the model for (i) optimal
consumption, (i) the optimal portfolio, and (éii) asset prices amounts to finding
the process for the growth variable that satisfies this restriction.

Unless the elasticity of intertemporal substitution is unity, we can replace the
growth variable with the wealth—consumption ratio. The homogeneity properties
of the representative agent’s planning problem (homothetic preferences and linear
technology) ensure that optimal consumption is proportional to wealth. We show
that the optimal wealth—consumption ratio is the value of an annuity when the
numeraire has been changed from units of the consumption good to shares in the
consumption process. Thus, the wealth-consumption ratio is the value of an asset.
As such, it must obey a standard absence-of-arbitrage condition.

As a practical matter, the model is solved when we know how to obtain, analyt-
ically or numerically, an expression for the consumption-wealth ratio that satisfies
this condition. It is then straightforward to obtain expressions for the rate of inter-
est and the price of risk—determined by the dynamics of the so-called state-price
deflator—and other variables of interest. In order to focus on the role of prefer-
ences, it is convenient, in the spirit of Lucas (1978) (as well as Mehra and Prescott
(1985) and Weil (1989)), to start with the exchange problem, in which the forcing
process is consumption and we solve for the supporting prices, i.e., the state-price
deflator. For the planning problem, we reverse the process, solving for the optimal
consumption and investment plans using the state-price deflator as the forcing pro-
cess. Finally, in the spirit of Cox, Ingersoll, Jr., and Ross (1985a) and Campbell
(1993), we model technology, which we interpret as the return on the optimally
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invested wealth of the representative consumer. For this production problem, then,
we solve for consumption and prices using the return on the market portfolio as the
forcing process.

The choice of forcing process is not limited to the three already mentioned, namely
consumption, the state-price deflator and the return on optimally invested wealth.
It turns out, for example, that with the forcing process chosen as the product
of the state-price deflator and wealth (which can be interpreted as the state-price
deflator when the numeraire is shares in the wealth process) the model can be solved
algebraically. Although this choice does not correspond to any natural setting, it
opens the path to generating examples with arbitrarily complex dynamics.

With a natural forcing process, it is not possible in general to find a consumption-
wealth ratio that satisfies the no-arbitrage condition, but progress is achieved by
modeling the dynamics of the forcing process as driven by a finite set of Markovian
state variables. In such a Markovian setting the no-arbitrage condition becomes a
partial differential equation (PDE) that we wish to solve for the wealth-consumption
ratio as a function of the state variables (and time). Because this ratio is an annu-
ity, its value is that of an integral of bond prices. In some circumstances, standard
methods deliver exact solutions (numerically at least and sometimes even analyt-
ically) to the bond pricing problem, and we get the wealth-consumption ratio by
numerical integration. In all other cases, we attack the annuity PDE directly and
provide an approximate solution method that is quite general and can be used to
produce fast, accurate numerical solutions that converge to the Taylor expansion of
the exact solution.

Much like standard bond pricing methods, our general solution method trans-
forms the PDE into a set of simultaneous ordinary differential equations (ODE)
when the horizon is finite. A unique solution is guaranteed to exist, but only for
horizons that are sufficiently short. We solve the infinite-horizon problem by ex-
tending the finite horizon and taking a limit. Such a limit does not necessarily exist,
but when it does, it is the solution of a set of algebraic equations.

Related work. As noted above, Duffie and Epstein (1992b) and Duffie and Skiadas
(1994) lay the groundwork for continuous-time modeling of recursive preferences.
Schroder and Skiadas (1997) extend the earlier work in a number of important ways.
They prove existence and uniqueness of solutions and address the relation between
the first-order conditions and optimality in a more general non-Markovian setting
than has been treated previously, and we refer the reader to their paper regarding
these issues.! They also provide some closed-form solutions to the planning problem
in special cases that we also consider below.

Duffie and Epstein (1992a) derive the representation for risk premia in the setting
we adopt here. Both Duffie and Epstein (1992a) and Duffie, Schroder, and Skiadas
(1997) solve one-factor models of the term structure in the special case where the

!By contrast, we propose a method that delivers candidate solutions for continuation utility and
consumption. A martingale property must be checked for our proposed continuation utility to
be valid, and the consumption process is only guaranteed to satisfy the first-order condition for
optimality. Schroder and Skiadas (1997) establish the sufficiency of the first-order condition for
some, but not all, parameter values.
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dynamics of the state variable are introduced through the growth rate of consump-
tion. Among other things, these papers address the how a change in the coefficient
of relative risk aversion affects the shape of the yield curve.

Campbell (1993) linearizes the discrete-time model of Epstein and Zin (1991),
and derives an approximate solution to the model in the homoskedastic case that is
exact in the special case. We derive more general conditions under which important
aspects of Campbell’s solution are essentially exact, providing insight into the per-
formance of his approximate solutions. In addition, we examine the approximate
relations Campbell describes between the volatility of a perpetuity and the price
of risk. Campbell’s model is used by Campbell and Viceira (1996) to study the
planning problem.

Outline. In Section 2, we adopt a non-Markovian setting to analyze the structure of
the model. We introduce the utility function (K-P SDU), for which we derive a two-
state-variable representation in the context of the exchange problem, thereby simpli-
fying the model’s central restriction. The state variables independently capture the
level and growth features of the endowment process. The wealth—consumption ratio
depends in a simple way on the growth variable; the relation is one-to-one except in
the case of unit elasticity of intertemporal substitution. We demonstrate that this
ratio is the value of an annuity after the numeraire has been changed from units of
consumption good to shares in the endowment itself. We then address the planning
problem, for which the dynamics of the state—price deflator are given, and we show
that after changing the level variable from consumption to wealth and presenting
the problem as an exercise in dynamic programming, our representation for util-
ity satisfies the envelop condition identically. Next we turn to general equilibrium
where we model technology and derive the restriction on the growth variable with
respect to those dynamics. Finally we address the finite-horizon problem explicitly.

In Section 3 we investigate the features of solutions to the model that can be
inferred in the non-Markovian setting of Section 2. We unify the three restrictions
on the growth variable in terms of the dynamics of a generic forcing variable. In the
case of unit elasticity of intertemporal substitution combined with homoskedasticity,
we show that the growth variable is a weighted average of expected future growth
rates of the forcing variable. For other elasticities, we rely on the fact that the
wealth—consumption ratio is an asset price (the value of an endowment annuity) to
investigate the model. We show that the weak form of the expectations hypothesis
as applied to the endowment term structure delivers useful results. In addition, we
examine a number of limiting cases regarding the preference parameters.

In Section 4, we present the PDEs that characterize the solution to the model
in a Markovian setting. We solve by integration of bond prices when bond pricing
methods deliver exact solutions, and we describe our generic power series solution
method through a sequence of examples. We also provide an example that illustrates
that (¢) that a solution may fail to exist for an arbitrary finite horizon and (ii) that,
even when a solution exists for all finite horizons, it does not convergence as the
horizon goes to infinity.
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In Section 5 we summarize briefly the contribution of this paper, and we discuss
how the tools we provide can be brought to bear on asset pricing puzzles in future
research. In a future version of this paper, we intend to include a numerical investi-
gation to illustrate our method. In the meantime, we have included in an Appendix
a complete Mathematica package that implements all aspects of our method.

2. THE STRUCTURE OF THE MODEL

Tastes: Stochastic differential utility. We now introduce the preferences of the
representative agent, for which we adopt Kreps—Porteus stochastic differential utility
(SDU). We present a value function for Kreps—Porteus SDU that is valid for the
entire parameter space. Using this value function and the general representation
for the SDU gradient given by Duffie and Skiadas (1994), we obtain an explicit
representation for the state-price deflator. We derive expressions for the interest
rate and the price of risk in terms of this representation.

As explained by Duffie and Epstein (1992a) and Duffie and Epstein (1992b), SDU
(not just the Kreps—Porteus specification) can be represented by a pair of functions
(f, A) called an aggregator.? The functions f and A can be interpreted as capturing
separately attitudes toward intertemporal substitution and attitudes toward risk.
Hypothetical experiments can be conducted, for example, by fixing f and varying A
to study the effect of increasing risk aversion. Associated with the aggregator, there
is a process V(t), called continuation utility, such that the value of the consumption
plan {c(t) | t > 0} is V(0). When SDU is well-defined, the process for V is uniquely
given by

V(1) = (—f<c<t>n7<t>> L i) ||o—p<t>||2) dt + oy (t) AW (2),

DN | =

for some oy (t).

To represent a given SDU, the aggregator is not unique. Importantly, there
exists a normalized form (f, A) where A = 0. Significant analytical simplification
is achieved by using the normalized aggregator, although the convenient separation
referred to above is lost since both aspects of preferences are combined in f. Suppose
that we define V(t) := T (V(t)), where 7(v) is a twice-continuously differentiable and
strictly increasing transformation. Since only the ordinal properties of utility are of
interest, the change of variables has no effect on choices, but it changes the form of
the aggregator (through Ito’s lemma). If we choose 7 to satisfy 17" (v)—A(v) T’ (v) =
0, then the new aggregator is (f, A), where A = 0 and f(c, v) is defined implicitly

in f(e,T(2)) =7'(2) f(c,z). With the new aggregator, we have
dV(t) = py(t) dt + oy (t) T dW (t), (2.1)
where

py(t) = —f(c(t), V(1)), (2.2)

2Qur notation reverses the roles of (f, A) and (f, A).
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Whenever two processes c(t) and V(t) satisfy (2.2), then V(¢) is the process for
continuation utility corresponding to the consumption plan c¢(t).> Using (2.1) and
(2.2), we can also express recursive utility as

V(t) = E, [ /t " e(s)(s)) ds] . (2.3)

We are interested in both finite- and infinity-horizon settings. For the infinite hori-
zon, we take the limit of (2.3) as T — oo. The Riesz representation of the utility
gradient for such preferences is given by:*

G(t) = exp { Fule(s). V() ds} Fule(t), V(2)), (2.4)

where f. and f, are the partial derivatives of f.°> Optimality of consumption re-
quires that the utility gradient be proportional to the state—price deflator. (See
Appendix A for a discussion of the state—price deflator.) Note that the relative
dynamics of the utility gradient are given by dG/G = df./f. + f. dt.

One of the aggregators for Kreps—Porteus SDU is®

- Qv ((c/v)=1/n -1 - —

fle,v) = (« {_) T ) and A(v) = 77, (2.5)
where 60, ), and «y are constant parameters. As shown by Duffie and Epstein (1992a),
these preferences allow a disentangling of attitudes toward risk from attitudes to-
ward intertemporal substitution. In our parameterization, 6 > 0 is the rate of time
preference, n > 0 is the elasticity of intertemporal substitution and v > 0 is the
coefficient of relative risk aversion. When v7n = 1, Kreps—Porteus SDU specializes
to standard time-separable preferences with power utility, characterized by indiffer-
ence toward the timing of resolution of uncertainty. (With n~ > 1, the consumer
prefers early resolution and with n+y < 1, late resolution). That yn = 1 reduces to
the case of standard preferences is more easily seen in terms of the utility gradient
using the normalized aggregator, which we derive below.

Duffie and Epstein (1992b) show that preferences are homothetic if and only if
there is an ordinally equivalent aggregator (f, A) satisfying (i) f is homogeneous of
degree 1 and (i) A is linearly homogeneous of degree —1. The aggregator (f, A)
given in (2.5) clearly satisfies these conditions. To normalize the aggregator into
the canonical form (f,0), use the transformation

vl —1

1—7

s=0

T(v) = , (2.6)

3Duffie and Lions (1992) address the existence and uniqueness of ¥ when c is modeled in terms of
state variables (where c itself may be a state variable).

“Duffie and Epstein (1992a) derive a Markovian version of (2.4) using the Bellman equation, while
Duffie and Skiadas (1994) derive (2.4) in a more general non-Markovian semimartingale setting.

®Marginal utility in the direction of the consumption process g is given by E; [ f:; . G(s)q(s) ds].
See Duffie (1996) for a discussion of the utility gradient.

5The functional form of f comes from Duffie and Epstein (1992a), p. 418. Their p is 1 — 1/7, their
a is 1 —~y, and their 3 is 6.
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ov ((%)Hm B 1)

f(cvv): 1_1/77 )

For each of the cases v = 1 and n = 1, the aggregator follows from taking a limit
in (2.7).” Duffie and Epstein (1992a) use 7'(v) = v177/(1 —~). As a result we have
1+ (1 —+)v where they have (1 —+)v in their normalized aggregator (p. 420). The
advantage of our formulation is that we get the correct limit for v = 1. Although
7(0) # 0 for our transformation, it will turn out that V is always positive for all
positive values of v and 7.

producing

Vi=1+(1—-7)w. (2.7)

Continuation utility, the utility gradient, and the exchange problem. The
first problem we face is that of finding a representation for continuation utility and
the utility gradient of an agent with K-P SDU and a given consumption process.
This is the usual setting of an endowment economy. In this setting, the famous
tree metaphor clarifies some discussion, so we imagine for the time being that the
endowment grows on identical trees, so normalized that in the current period each
tree produces one unit of the good. In the current period, then, ¢ denotes both
current consumption and the number of trees.

We now establish an important result. For a consumer with K-P SDU preferences,
we can represent the state of the world with only two state variables: the level of
current consumption, ¢(t), and another variable, 1 (t), that captures—conditional on
current consumption—all relevant information about future growth opportunities
for consumption, i.e., about the productivity of a tree. As such, ¥(t) depends
on the dynamics of log consumption but not its current value. We can write the
value of continuation utility as a deterministic function of the two state variables:
V(t) = g(c(t),(t)). Note that we have two ways to measure the increase in utility
from an increase in consumption: f.(c,g(c,¥)) and g.(c,¢). The first expression
indicates the marginal utility of a unit of current consumption (holding the future
value of continuation utility fixed), while the second indicates the marginal utility of
a tree. The ratio g.(c,v)/f.(c,g(c,v)) is the marginal rate of substitution between
trees and current consumption. Given the homotheticity of preferences, this ratio
must be independent of current consumption.

Define the function

ge(e,¥)
h = 2.9
W= Fegte ) 29
Since 7(t) := h(1(t)) is the value of a tree expressed in terms of consumption

good and c(t) is the number of trees (as normalized in period t), we may interpret
k(t) := m(t) c(t) as the evaluation the consumer would give of his wealth, given his
endowment, even in the absence of a market. Given the form of the normalized

"We take a particular interest in the case 7 = 1, which yields

fle,v) =0V (log(c) - 1 log(V)> . 2.8)
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aggregator, h(v) is independent of ¢ if and only if 1+ (1 —+) g(c, ) is homogeneous
of degree 1 — v in ¢, that is g(c,¢0) = (c!77g(¥) — 1)/(1 — 7). Now, we have
considerable freedom in the definition of 1, because, at the cost of changing the
form of g, we can replace ¥ by any other variable that is in one-to-one relation with
1. The simplest choice is to define 1) so that g(¢) = ¢, but this choice complicates
future expressions and is hard to interpret. Choosing g(v) = !~7 achieves the
greatest simplification of future expressions, but our choice is slightly different and
easier to interpret. By setting g(v) = (/)71 =) it will turn out that 1) is the
marginal utility of wealth corresponding to the unnormalized aggregator (f, A) (this
aggregator is characterized by constant returns to scale, so that marginal utility of
wealth is independent of wealth or current consumption). As a result, we have®

(c (/o) ~1

g9(c,¥) = T (2.10a)
7= h(p) =0 "yT L, (2.10b)
Using (2.10a), we can write
1-n _
f(Cag(Ca¢)) = _(c(w/e)n)l—’Y {ng ((wl/e_)nn 1) } : (2'11)
Note that
_nf ((/0) " 1)
Lim - =0 log(y/0).

The partial derivatives f.(c,v) and f,(c,v) evaluated at v = g(c, 1)) are given by
fele,gle, ) = 07tV (2.12a)

l-n _
fole,g(e, ) = =0 — (% —7) {779 ((1’[)1/9_)7777 D) } (2.12b)

We obtain the Riesz representation of the utility gradient by inserting (2.12) into
(2.4). With standard preferences, n = 1/v, the utility gradient specializes to
G(t) = 0e % c(t)™7 as expected. Another benchmark case is ¥ = 1, for which
fele g(e,9)) = 67611 L and fi(c, g, 1)) = 07911 = 7L,

Thus far in our discussion of g and v, we have not distinguished between infinite-
and finite-horizon problems. The finite horizon imposes the boundary condition
m(T) = 0. This condition cannot be met when 7 = 1 with the normalization
adopted. At the end of this section, we will explicitly address the finite-horizon
problem. For the present, we treat only the infinite-horizon case.

A necessary condition for g(c(t),%(t)) to be the continuation utility correspond-
ing to the endowment, equation (2.2) requires that the drift of g(c(t),1(t)) equal
—f(c(t),g(c(t),(t))). This requirement produces the consistency condition that v

8As asserted above, V =1+ (1 — ) g(c, %) = (¢ (1/0)")' ™7 is always positive.
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must satisfy in order that g(c(t),%(t)) be continuation utility:

nf ((¥(t)/0)' " —1)
L—n

= e(t) + (1) + (L= ) 5 loe®) + noy®I?,  (213)

where all the terms are implicitly defined by
dlog(c(t)) = fie(t) dt + oc(t) " dW ()
dlog(1(t)) = Fiy (£) dt + oy (1)WY (1)

Our choice of g has allowed us to cancel (c(t) (¥(t)/0)")'™ from both sides of
(2.13). If 1 solves equation (2.13), then g as given in (2.10a) is continuation utility,
provided fst:o oy(s)TdW (s) is a martingale, where

oy (t) = (c(t) (¥(£)/6)") ™ {oe(t) +noy(t)}.

(See Proposition 3 in Schroder and Skiadas (1997) for a proof.) Thus, whenever a
solution to the underlying problem exists, the solution to (2.13) provides it. How-
ever, the solution to (2.13) does not provide the solution to the underly problem
unless the volatility of g is well behaved.

We now seek the interest rate and price of risk that support the endowment.
To support a consumption plan, prices must be aligned with marginal rates of
substitution, which in the present context means that the state-price deflator m(t)
must be colinear with the utility gradient G(¢). In accord with (A.1), we note (from
applying It6’s lemma to G(¢)) that in this case the short rate r and the price of risk
A are given by

r(t) =6+ %ﬁc(t) I Cke) 571 — ) % loe(t) +noy@®)|? — % IMOIZ (2.14a)

At) =v0c(t) + (yn — 1) ay(t), (2.14b)

where we have used (2.13) to eliminate the term in curly brackets from f,(c, g(c, %))
in (2.12b). As a by-product, fi,; has been eliminated as well from the expression
for the interest rate. Consequently, o, is the only aspect of ¢ we will need for
asset pricing. Note that o, enters the price of risk with a sign that depends on
whether early or late resolution of uncertainty is preferred. Again, with n = 1/~,
(2.14) specializes to the expected expressions for » and A under the C-CAPM:
7(t) = 0+ fic(t)— 2 7% ||oc(t)||? and A(t) = 7y o.(t). This is consistent with Theorem
2(a) (under condition I) in Schroder and Skiadas (1997).

Using the utility gradient as state-price deflator, we can price assets. For example,
an asset that pays a continuous dividend at the rate of one unit of good per year (a

9We use the following notational convention. If z(t) is explicitly strictly positive, then p., fi. and
o, refer to the quantities implicitly defined in dz(t)/z(t) = p.(t) dt+o.(t) " dW (t) and dlog(z(t)) =
fiz(t) dt + o= (t) TdW (t), implying fi-(t) := p=(t) — 3 [|o=(¢)||>. The state variables X (¢) in section 4
are not necessarily positive. For these variables, we write dX (t) = pux (t) dt+ox(t)T dW (t), so that
px (t) refers to the drift of X (in level) and ox to its volatility.
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real consol) is valued at

E; [ s:%ds} = /s:p(t, s)ds, (2.15)

where p(t, s) = E[G(s)/G(t)] is the value at time ¢ of a zero-coupon bond that pays
one unit of consumption at time s. We can also find the value of the endowment,
which can be interpreted as the consumer’s wealth:

> G(s)

k(t) = E; [ o0 c(s) ds} . (2.16)
We note that the right-hand side of (2.16) is marginal utility in the direction of
the endowment. Earlier, we claimed that wealth is given by k(t) = h(y(t)) c(t) =
O~ (t)" L c(t), where h(v) = g.(c,v¥)/f.(c,g9(c,7)). The two notions of wealth
are, of course, the same. To see this, let VV(c,c,t) be the Gateaux derivative of
V(t) evaluated at the endowment and in the direction of process ¢/(t). Then, our
definition of a tree implies that g.(c(t),v(t)) = VV(c, ¢, t), and the desired result fol-
lows from the Riesz representation of VV(c,c,t) given in Duffie and Skiadas (1994)
(note that with equation (2.12) substituted in, (2.4) is the Riesz representation of

VV(c,c,0)).
It is instructive to examine this result from a slightly different angle. To do this,
it is convenient to define 7(t) := k(t)/c(t), where k(t) is defined by (2.16), so that
we need to show that 7(t) = h(y(t)). Dividing both sides of (2.16) by ¢(¢) produces

% Ge(s)
m(t) = E; [ oo ds] , (2.17)
where G.(t) = G(t) c(t). Equation (2.17) shows that 7 (¢) is the value of a consol
(an endowment consol) where the state—price deflator is given by VG, (t). Formally,
Ge(t) is the state—price deflator where the numeraire has been changed from units
of the consumption good to units of the endowment process. (See Appendix A for a
discussion of changing numeraires.) Given (2.17) we can write m(t) = fg; ¢ De(t, s) ds,
where p(t,s) = Ei[Ge(s)/Ge(t)] is the value at time ¢ of a zero-coupon bond that
pays one unit of the endowment at time s.

Let the dynamics of 7(t) be given by dn(t)/m(t) = ux(t) dt + o (t)TdW (t). Be-
cause 7(t) is the value of an asset (when measured in endowment units), the drift
of m will be determined by the martingale property of deflated gains:

() + % — re(t) + At Ton(0), (2.18)

where r.(t) and A¢(¢) follow from applying It6’s lemma to Ge(t):

re(t) = r(t) - (ﬁc(t) ! ||o—c<t>r\2) A T ou(t). (2.190)
Ao(t) = A(t) — au(t). (2.19b)
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Substituting (2.14) into (2.19) produces

re(t) =6+ =2 L)+ (1 =) 3 loeIP ~n (1 =70 lou(@)? - (2200)
Ae(t) = (v = 1) oe(t) + (vn — 1) oy (t). (2.20b)

For n = 1, r.(t) = 0. With this constant interest rate, (2.18) implies 7 (t) = 1/6
as asserted in (2.10b). For n # 1, the assertion in (2.10b) that 7(t) = =7 (¢)7*
implies

p(£) = (1 — 1) fap () + % I(n = 1) o (&) (2.21a)
or(t) = (n—1)oyp(t). (2.21b)

Substituting (2.20) and (2.21) into (2.18) produces (2.13), which establishes the
internal consistency of our assertion.

Terminology. For lack of better terms, we will refer to r. and A, as the endowment
interest rate and the endowment price of risk, respectively, to distinguish them from
the real interest rate and real price of risk, » and A. As will become evident, these
constructs have important applications beyond an endowment economy.

Optimal consumption and portfolio choice: The planning problem. In
this section, we consider the problem of the optimal investment of wealth. When
the agent has the recursive preferences assumed here, this problem is analyzed by
Campbell and Viceira (1996) in a discrete-time setting, and by Duffie and Epstein
(1992a) and Schroder and Skiadas (1997) in a continuous-time setting.

In the previous section, the consumption process was given, and so there was no
question of the optimality of consumption. Current opportunities were given by
current consumption and future opportunities were determined by the dynamics of
consumption. Nevertheless, we were able to find wealth—the value of the endow-
ment process. In this section, we change perspective: Consumption is no longer
given exogenously. Current opportunities are given by current wealth, k(¢), and
future opportunities are determined by the state—price deflator (as reflected in asset
prices) and current consumption which decreases the amount to invest. The second
state variable, ¥, summarizes all relevant information about future opportunities as
reflected in the dynamics of the state—price deflator, namely the interest rate, r(t),
and the price of risk, A(¢). In this setting, we will solve for the optimal consumption
and investment plans.

The investment opportunity set can be characterized by n risky securities with
dynamics of the form

AOit) _ ) dt+ o, ()T AW (). (2.22)

¢i(t)
The expected return on security ¢ is determined by the absence-of-arbitrage condi-
tion

o, (1) = (1) + 0,(6) T A2). (2.23)
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(The dynamics of the risky assets reflect the reinvestment of any dividends paid.)
In addition there is the money-market account (MMA):

w = r(t) dt.

B(t)
A portfolio can be characterized by a vector of weights, «(t), for the risky securities
and a weight ay(t) for the MMA, such that > ;o; = 1. Let X, be the matrix whose
i-th column is oy, and define My := (figy, - - - , f1p,) ' and &= (a1, ..., ay)". The
value of a portfolio evolves as follows:

=05 e 5

o(t) = pg(t) dt + oy(t) AW (2),

where (using (2.23))
po(t) = ao(t) r(t) + My(t) " at) = r(t) + A1) "oy (t)

and
o4(t) = By(t) aft). (2.24)
Wealth evolves according to
i 00
dk(t) = k(t) o) (t) dt. (2.25)

On the optimal path, continuation utility is given by (2.10a) and the utility
gradient by (2.12a), where ¥ must satisfy (2.13). Optimality of the consumption
process requires that the utility gradient be aligned with the state—price deflator:
G(t) = amf(t), for some positive constant «, so that equations (2.14) are satisfied.
We assume here that this first-order condition is also sufficient for the optimality of
the solution. This is an important caveat, because sufficiency has not been proved
for all parameter values. The most complete results so far can be found in Schroder
and Skiadas (1997). Using these equations to eliminate fi.(t) and o.(¢) from (2.13),
we can reduce these optimality conditions to the following restriction:

0 ((¥(1)/0) " —1)

0
+ 1-7

—{r+ 30} +

1—-~v\1
+ (T) 5 IA@E) + oy ()] (2.26)

The solution to (2.26) for ¢ given r and A can then be used in (2.14) to solve for the
dynamics of optimal consumption, ji.(t) and o.(t). Hereafter, we identify the utility
gradient with the state—price deflator (ignoring the constant of proportionality).

The next step is to show that the dynamics of optimal consumption imply the
dynamics of the optimal portfolio. Since ¢(t) is the value of an asset, its drift is
determined by its volatility (conditional on r and \):

po(t) = r(t) + A(t) Toy(t). (2.27)
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Thus the portfolio problem is reduced to solving for o4(t). To establish the link
between ¢ and ¢ we can use (2.25) and k(t) = 7(t) ¢(t) to produce

B(t) = c(t) 7(t) exp ( / ) ds) . (2.28)

=0
Applying Itd’s lemma to (2.28) and matching drifts and diffusions yields'°

Folt) = elt) + Fislt) = =25 (2.290)
o4(t) = oc(t) + ox(t). (2.29b)
Recall that m(t) = 774(t)"!, so that o.(t) = (n—1) 0y (t). Together with (2.14b),

we have established!!
1 1-—
0¢(t) = (;) A(t) + (T’y) aw(t). (2.30)

Any solution a to g4(t) = X4(t) a(t) is a solution to the portfolio problem. The
matrix Yy is [ X n, where [ is the number of Brownian motions that determine the
state of information and n is the number of linear activities. For simplicity, we
assume that Xy is of full rank. If [ > n, it is impossible to hedge against all sources
of risk in the economy. In this case, if necessary through a Choleski decomposition
of the Brownian motions that redefines the matrix ¥4 and all volatilities but keeps
all covariances unchanged, one can assume without loss of generality that ¥! =

(E;T 0), where E; is an n x n invertible matrix. In terms of the new Brownian

motions, we have a;br = (a;;T aéf). If 0;5 # 0, the optimal investment problem has

no solution. So we assume aé) = 0. If n > [, then it is possible to drop activities
that are not needed in the optimal portfolio, keeping only [ such activities. By

renumbering activities if necessary, we can write Xy = (Z;‘S O) and we set 02 = 0‘¢.12

We can now write the solution in the general case as

_ 1 _ 1—- -
af(t) =257 (1) o) (t) = (;) 55 () AT (8) + (TV) S5 M) op(t)  (231)
using (2.30). In this equation, \* corresponds to the n first components of A (under
the new Brownian motions) if I > n and is equal to A otherwise.!> This result is
consistent with Theorem 2(c) (under conditions I and II) in Schroder and Skiadas

(1997).

9Note that p(t) = fis(t) + & oo ()%

1 This expression has appeared in Campbell and his citations.

12S0me activities may slip in and out of the optimal portfolio. At the expense of some notation for
keeping track of which activities are in the optimal portfolio at time ¢, we do not need to assume
that the set of activities in the portfolio never changes.

3Defining \*(t) = Zz_l(t)T(Mcb(t) —r(t)), we can eliminate \* from (2.31):

o (1) = (%) 5510 557 (0T (M (6) — () + (%) 5571 (0) o (1),
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We see that when v = 1, a(t) = Ej;_l(t) A*(t)/~. This component is the so-
called “myopic” component of portfolio demand, in the terminology of Campbell
and Viceira (1996). The other component constitutes a hedge against changes in
investment opportunities. The first component is easily found without knowledge
of the consumption plan, but evaluation of the second component requires such
knowledge (through (t)).

The production problem. In a representative-agent general equilibrium, we in-
terpret k(t) as the value of the capital stock and d¢(t)/p(t) as the return on the
aggregate investment portfolio—i.e., the return on the market portfolio. At this
level of analysis, we ignore the portfolio allocation problem, except to require zero
net investment in the money-market account, treating this as an economy with a
single investment opportunity. We can think of ¢(t) itself as the value of a portfolio
where the consumption “dividends” are continuously reinvested. In this role, we
refer to ¢ as the capital account. If we wish, we may think of this economy as a
production economy, where the return on the capital account is the result of linear
production technology subject to random shocks as in Cox, Ingersoll, Jr., and Ross
(1985a).

The state variables in this case are k(t) and ¢ (t), where 1 (¢) impounds informa-
tion regarding the dynamics of technology. In this case, we need to ensure that the
interest rate and the price of risk be properly related to the dynamics of technology.
We can achieve this by using (2.27) and (2.30) to eliminate r and A from (2.26):

0 ((v(t)/0) " —1)
L=mn
Having solved (2.32) for ¢ given fis and o4 we can use (2.27) and (2.30) to solve

for r and X and then use (2.14) to solve for fi. and o..

0+ = iolt) + (1) + (1= 1) 3 o (8) + o). (2:32)

Relation to stochastic control. The traditional approach to solving the consump-
tion—investment problem is to apply the stochastic control method. In this ap-
proach, we assume we can write optimal consumption (the policy function) and opti-
mized utility (the value function) in terms of the state variables: ¢(t) = C(k(¢),1(t))
and V(t) = j(k(t),v(t)), where j(k,v) := g(C(k,v),v). In our case, the envelop
condition, ji = f., delivers the form of the policy function. Given the definition of
Jj, we have jp = Cx gc, and so the envelop condition implies Cx = f./g. = 1/h as
established in (2.9). We conclude that C(k,v) = k/h(¢)). Therefore we can write!4

(k)7 —1
1—vy
Once we have the form of the policy function, Bellman’s principle of optimality in

essence turns the stochastic control problem into a “recursive utility” problem for
the value function:

py(t) = —f*(k(t),9(t)), where f*(k,v) := f(C(k,%),9(C(k,¥),¢))  (2.34)

1 Closely related to C and j in (2.33) are the functions (A.1) and (A.2) in Giovannini and Weil
(1989).

C(k,p) = 0" "k and ji(k,4) = (2.33)
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and py(t) is the drift of j(k(t),1(t)). If we take ¢ as the forcing variable (for
example), then (2.34) is equivalent to (2.32).

Finite horizon and 7 # 1. When the horizon is finite, the wealth—consumption
ratio, 7(t), is the value of an annuity, which goes to zero as the horizon goes to zero.
We can rewrite the absence-of-arbitrage condition for 7(¢) given in (2.18) as

fir(t) + 1 = 1o(t) m(t) + Ne(t) 71 (2), subject to w(T') = 0. (2.35)

We have expressed the dynamics of the 7 in (2.35) in absolute terms: dm(t) =
fir(t) dt+G.(t) TdW (t). Given (2.10b), the boundary condition requires 1 to depend

on the horizon:
lim o(t) = {O ifn>1
t—T oo ifn <1l

Even though v behaves badly as the horizon approaches, 7 itself is well-behaved
and, as long as n # 1, we can use (2.35) as the restriction to solve for 7 and then
we can find v by inverting m = 6~7""L. Therefore, for n # 1, we can simply
reinterpret the equations from our previous analysis of the infinite horizon problem.
The case n = 1 is more complicated.

Finite horizon and n = 1. For n = 1, the boundary condition 7(7") = 0 cannot
be satisfied without changing the way c enters g(c, ). For this case we define!®

G(e,,7) =g (cq(T),z/)) , where (1) :=1—¢7".
Note that G(c, 1, 00) = g(c, ). Using G, we have
— GC(vavT) — q(T)
fc(cv G(Ca¢aT)) ‘9 ’

which agrees with Theorem 2(b) (under condition II) in Schroder and Skiadas
(1997). Using G(c(t),v(t),T —t) in place of g(c(t),v(t)), the restriction py + f =0
becomes

0 10g(6(1)/6) = a(T — 1) Fult) + 7 (8) + (1 =) 3 [a(T ~ ) oe(t) + o (1)
(2.37)

m=H(T) (2.36)

subject to ¢(T') = 6. Note that (2.13) as n — 1 and (2.37) as T' — oo converge to
the same restriction. The partial derivatives of f(c,v) evaluated at v = G(c, ¢, T)
are

fele, Gle,p, 7)) = 07 pt =7 Q) (2.38a)
fule:Gle,7)) = =6 — 01 = 7) {log(1/6) — e~ log(c) } . (2.38)

15The expression c? can be seen in the term structure example in Duffie and Epstein (1992a) for
example.
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where Q(7) = v+ (1 — ) e 7. With standard preferences, v = 1, the utility
gradient specializes to G(t) = e % c(t)™ as expected. In the general case, the
interest rate and price of risk are given by

r(t) =0+ pe(t) + G -Q(T - t)) o) + (1 — ) oc(t) Top(t) (2.39a)
A(t) = Q(T —t)oc(t) + (v — 1) oy (1), (2.39b)

where (as before) we can have used py + f = 0 to eliminate both ¢ and i, from
the interest rate. Again, with v = 1, (2.39) specializes to the expected expressions
for 7 and A under the C-CAPM: r(t) = 0 + fic(t) — 5 [|oc(t)||? and A(t) = o(t). To
reaffirm the internal consistency, note that substituting (2.39) into (2.19) produces
re(t) = 6. With this constant interest rate, (2.35) implies 7(t) = (T — t)/6 as
asserted by (2.36).

Comparing (2.14) with (2.39), a discontinuity is evident for the finite-horizon
case. Suppose /i, and o, are constant, so that o, = 0. For n # 1 the price of risk is
constant at vy o., while for n = 1 the price of risk depends on the horizon, moving
toward o, ast — T. As we show below in the context of a specific planning problem,
the consumption process (viewed as a function of the preference parameters) is
discontinuous at 7 = 1 whenever the data are continuous, but only in the finite-
horizon case. In the infinite-horizon, the discontinuity disappears and in any case,
the wealth-consumption ratio m(t) is continuous.

Turning to optimal consumption and optimal portfolio, we can use (2.39) to
eliminate fi. and o, from (2.37) produces

0 108(6(0)/6) = Tult) + (T 1) (1(0) + 5 1A )

! % % l9(T =) A#) + oy (@)]*. (240)

In this case, the optimal portfolio weights must satisfy

_ 1 1—x
og(t) = (—Q(T — t)) A(t) + (—Q(T — t)) oy(t). (2.41)
Finally, using (2.27) and (2.41) to eliminate r and X from (2.40), we have

0 log(v(t)/6) = 1ig(t) + a(T — 1) (y(t) — 0) + (1 —7) % lg(T — 1) o) + o (£)]*-
(2.42)

3. ANALYSIS OF THE MODEL IN A NON-MARKOVIAN SETTING

Thus far, we have considered three forcing processes: consumption, the state—
price deflator, and technology, each within a specific context: endowment economy,
optimal consumption in a partial equilibrium, and production economy. Having
established the equilibrium relationships among all three processes, we are now free
to model whichever forcing process we find convenient and (based on the solution
for 1) related to that process) infer the dynamics of the other two processes. For
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example, we can choose consumption as the forcing process and infer the dynamics
of technology that would generate that consumption process.

It is useful to recognize that there are other ways in which one can introduce dy-
namics into the model (in addition to the three choices listed above). We may in fact
start by choosing 1 and it dynamics. By itself, this is insufficient to solve the model
(in the sense of being able to determine the dynamics of consumption, etc.). Exam-
ining (2.32), for example, we see that if we also model o4, then (2.32) determines fi4
and we can in fact solve the model for the other processes of interest. This approach
is tantamount to modeling the deflated value of wealth, my(t) = m(¢t) k(t), which
can be interpreted as a state-price deflator after a change of numeraire:'® Indeed,
from the dynamics of m and k given in (2.14) and (2.25), we see that

dmk(t)
mi(t)

where we have used (2.30) to eliminate A from the volatility of my. Instead of
modeling o in conjunction with 1), we can model either A or .. The corresponding
restriction can then be solved for r or fi.. Although this approach to modeling the
dynamics may seem unnatural, it has the advantage of offering immediate solutions
for equilibrium relationships among variables of interest. Nevertheless, one may
choose to model one of the three forcing processes, in which case a solution for
must be found.

The challenge to using K—P SDU preferences is simply finding the process ¢ that
solves the proper restriction identically given a forcing process. In this section, we
will go as far as we can in a non-Markovian setting. Below we will have more to say
on this subject after we adopt a Markovian structure. Before proceeding, though,
it is convenient to unify all three solutions. To that end, we denote the forcing
variable y and its dynamics dlog(y(t)) = iy (t) dt + o, (t) T dW (), where y is either
consumption (c), the capital account (¢), and the inverse of the state—price deflator

(1/m).

= —0")(t)' " dt + (1 =) (04 (t) +a(1) AW (B),

y(t) fiy(t) oy(t) do d dy d3 dy(r) e=di+dy
c(t) fic(t) ot) 6 -1 1-v 0 1 e
mt)~t )+ 3 AOI° A®) nd 1-n 1-1 -1 Q1) -7
o(t) fig(t) op(t) m0 1-m 1—-y -1 1  2-n—y

TABLE 1. The coefficients of Equations (3.2) and (3.11) in terms of
the preference parameters. Q(7) =+ (1 —~) e 97.

6The interest rate—measured in units of wealth—is the consumption-wealth ratio, 1 /.
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Unit elasticity of intertemporal substitution and infinite horizon. Given
n = 1, each of (2.37), (2.40), and (2.42) can be written, for finite T, as

fip () = 0 log(1(t)/0) — q(T' —t) (1y(t) + d3 0)

(1-7)

T 2dy(T— 1) q(T —t) oy (t) + oy (D)]?, (3.1)

where d3 and dy(7) are given in Table 1. For T' = oo, (3.1) specializes to

fip(t) = 0 log((t)/0) — fay(t) — d2 % loy(2) + oy ()II* — d3 6, (3.2)

where dj is given in Table 1. In this case, aslong as C = —da 1 |0y (t)+0oy(t)||*—ds3 6
is constant, the solution to (3.2) is

P(t) = 6 exp(¢(t) — C/0), (3.3)
from which it follows that
fip(t) = pe(t) and  oy(t) = o¢(t), (3.4)

where d((t) = pc(t)dt + oc(t)TdW (t). Substituting (3.3) and (3.4) into (3.2) pro-
duces the restriction that ¢ must satisfy:

He(t) = 0C(8) — iy ). (3.5)

Now define ((t) as a weighted average of expected growth rates of the forcing process
y:

C(t) = / :ae—f’(s—t) ( /u ; B[, (w)] du) ds. (3.6)

It6’s lemma applied to (3.6) delivers (3.5) and

ou(t) = oelt) = / : g0 1) ( /u ; 5 (1 u) du> ds, (3.7)

where 77, (2, s) is the volatility of F[f,(s)].

C is constant under either of two conditions. The first is v = 1, which (with
n = 1) produces log utility. The second condition obtains when (i) o7, (t,u) is a
deterministic function of u — ¢, so that o¢(t) and, therefore, o, (t) is constant, and
(#) oy(t) is constant. The most important feature of the solution is the expression
for oy (t) = o¢(t) given in (3.7), because it is oy (t) that contributes to risk premia.!”

Non-unit elasticity of intertemporal substitution. We turn to analyzing the
model when 7 # 1.

1"Campbell (1993) derives a similar result for the case of y = ¢ in a discrete-time version of this
model, where he refers to ||oy ||* as “news about the discounted value of all future market returns.”
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The wutility gradient in terms of observables. As long as n # 1, we can replace the
unobservable 1) with the observable ¢ in the utility gradient, following Epstein and
Zin (1991). Using (2.28) with 7(t) = 0774 (¢t)"!, we can solve for

b(t) = exp ( / ; 9"?@;‘" ds) g1/ (1) o)1/ (A=) () -1/

Substituting this expression for 1 (¢) into (2.12a) produces
m(t) = G(t) = 0% ™%t c(t) "/ (1), (3.8)
where the parameter § is defined by
l—v
0:= .
1—1/n
Applying It6’s lemma directly to (3.8) yields a convenient representation for the

short rate r(t) and the price of risk A(¢) in terms of the observable dynamics of the
growth rate of consumption and the return on the market portfolio ¢:

r(t) = (6/n) fe(t) + (1= 8) ig(t) + 05 — 5 AP, (3.92)
A(t) = (3/m) 0o(t) + (1= 6) 04 (t): (3.9b)

Note that 6 =1 (i.e., n-y = 1) delivers standard preferences and the C-CAPM. By
contrast § = 0 (i.e., ¥ = 1) delivers an intertemporal CAPM, where risk premia are
determined by the covariance with the market portfolio. These loci are plotted in
Figure 1 (where ~ is plotted on the vertical axis against 7 on the horizontal axis),
along with n = 1 and a fourth locus that we will discuss after some discussion of
the consol equation.

The annuity equation. When n # 1, we can make progress by focusing on solving
(2.35), which describes 7(t) as the price of an annuity and which we repeat here as

fr(t) + 1= re(t) m(t) + Ae(t) ' Tx (1), (3.10)

subject to m(T") = 0, where r.(t) and A.(¢) are given in (2.19).

By modeling r. and A directly, we can solve for “endowment bond” prices and
hence w. On the other hand, we may choose instead to model the dynamics of
either ¢ or ¢ or m directly. Based on equations (2.19) and (3.9), and using (2.28)
and k(t) = 7(t) c¢(t), we can write!®
2

o (t)
7(t)

re(t) = do + dy Jiy (t) + dy da % oy (817 + (a/dl)% ‘ (3.11a)

ar(t)
w(t)’

8Note that lim; 7 ||G(t)/7(t)||*> = 0, since

ox(t) = /:tpe(t, s)op,(t,s)ds and w(t) = /:t pe(t, s)ds,

where oy, (T,T) = 0 and p.(T,T) = 1.

Ae(t) = —d2 0y (t) — (¢/dn)

(3.11b)
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FIGURE 1. The coefficient of relative risk aversion, -y, versus the
elasticity of intertemporal substitution, n. The shaded areas show
where § = (1 —7)/(1 —1/n) <O0.

where d; depends only on 7 and dy depends only on . (See Table 1 for the particular
values.) Given i, and oy, if we can solve (3.10) for 7, the remaining remaining drifts
and diffusions can be found via the relations established above.®

Recall that the endowment deflator, which has r. as interest rate and A, as price
of risk, is given by m.(t) = m(t) c(t), which, in light of (3.8), is

me(t) = 07 709t c(£)170/7 ()01, 12)
1

(3
Note that the conditions for € = 0 in Table 1 are the same as 1 —d/n = 0 and
d —1 =0, which lead one or the other of ¢(t) and ¢(t) to be absent from m.(t). We
discuss these two cases.
Case 1: 6 =1, i.e., y=1/n.

This locus is plotted in Figure 1 as the rectangular hyperbola of standard
preferences. (Recall that this is the dividing line between preference for early
versus late resolution of uncertainty.) In this case, the endowment deflator
depends only on consumption: me(t) = 0e ?*c(t)~7. As a consequence, an

191t turns out that other drifts and diffusions can always be expressed in terms of fi,, oy, and o
without fir. See (2.14).
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exact solution to the model is possible when the forcing process is ¢. Moreover,
(2.19) can be used to replace fi.(t) and o.(t) with r(¢) and A(¢), so that an
exact solution is also possible when the forcing process is 1/m. In both cases,
e=01n (3.11).

Case 2: d =1, i.e., y+1n=2.

This locus is plotted in Figure 1 as the diagonal line. In this case, the
endowment deflator depends only on the capital account: m.(t) = 6 ¢(t)7 L.
As a consequence an exact solution to the model is possible when the forcing
process is ¢. In this case, ¢ = 0 in (3.11).

Deterministic endowment interest rates. The terms in (3.11) involving o,
present challenges to solving the model, and as such we refer to them as “nuisance”
terms. However, there are two circumstances under which the nuisance terms will
not be present: (i) when r. is deterministic, o, = 0, and (i#7) when ¢ = 0. We
deal with the first case immediately and the second case later in this section and in
the next section where we introduce Markovian state variables. We treat the case
where the nuisance terms are present in the next section as well.

There are two ways for 7¢(t) to be deterministic. First, if n =1 (i.e., d; = 0), then
re(t) = 0, and (3.10) devolves to 7 (t) = ¢(T'—t)/6. This equation provides no other
information and we solve (3.1) for ¢(t) as above. Second, if fiy(t) + 2 ||oy(t)|?
is deterministic, then o,(¢t) = 0 so that r.(t) is deterministic, even when y(t) is
stochastic (that is, o, # 0). Below we show an analytical solution to (3.10) for a
special case where the drift and volatility of log(y(t)) are each deterministic but
nontrivial; the next example shows the solution in the constant case.

Constant investment opportunity set with n # 1. When g, and o, are constant r,
is constant as well. In this case, the solution to (3.10) is
1— e Te (T—t)
m(t) = ———, (3.13)
Te
so that o, = 0. Setting y(t) = 1/m(t), for example, so that r» and A are constant,
we see that (3.11) implies

1 1
re=n0+0—-n) (r+=—|X?) and A= (1-=)A\.
2y gl

Now, from (2.19), we get

e (t) :17(7“—0)4—(1—1-77)w and o, = i
27y ¥

Schroder and Skiadas (1997) call this case the constant investment opportunity set,
and derive the solution through a different approach in their Theorem 2.2° Note

that when m(t) is deterministic, ¢ is deterministic as well, from (2.10b).
We have seen in the context of the exchange problem (when the consumption
process is fixed) that the equilibrium interest rate and price of risk exhibits a dis-
continuity at n = 1 in the finite horizon case. We now show that in the context

0Their 8 is 0, their v is 1 — 1/, and their o is § — 1 if § # 1 and 1 — « otherwise.
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of the planning problem with a constant opportunity set, the consumption process
exhibits a discontinuity at n = 1.

The discontinuity of consumption at n = 1. When n = 1, and r and A are constant,
the solution to (2.40) is

RV
0 10g(60)/0) = a(r) (r— 0+ 1)
Y
2 2
—e 07 {7‘9 (r -0+ —“2)\4‘2 ) +1og(Q(7)) _||2)\’y||2 } ,

where 7 := T — t. This result, then, implies that o,(t) = 0, and we obtain the
dynamics of consumption from (2.39):

NE A
o ™ = Qmy

Since Q(7) differs from v except when the horizon is infinite, contrasting this case
with that of n # 1 reveals a discontinuity in the dynamics of consumption. This
discontinuity disappears when the horizon is infinite. Note, however, that w(t) is
given by (3.13) even when 1 = 1, in which case 7. = 6, so that the wealth consump-
tion ratio is continuous in the preference parameters even when the consumption
process is not.

pe(t) =r—6+

The relation between the volatility of v and the volatility of forecast
revisions. For the infinite-horizon case when n = 1, we showed that if o,(t) is
constant and oz, (t,u) is a deterministic function of u — ¢, then log(¢(t)) equals
a weighted average of expected growth rates of y (plus a constant), where the
weights are exponentially declining. As a consequence, the volatility of i equals
the weighted average of revisions to expected growth rates of y. In this section, we
show that essentially the same relation between the volatilities holds when n # 1
(under the same conditions for oy () and &z, (¢,u)) as long as ¢ = 0. In particular,
for y = ¢ or y = 1/m, the volatility of ¢ still equals the volatility of a weighted
average of revisions to expected growth rates of y (where the weights are roughly
exponentially declining). For y = ¢, the volatility of ¢ is proportional to the average
of the revisions, with proportionality constant 1. These results are a consequence
of the weak form of the expectations hypothesis of the term structure of interest
rates where the numeraire is taken to be units of the endowment process.

Let p(t, s) be the value at time ¢ of a zero-coupon bond that pays one unit of an
arbitrary numeraire at time s. Define the yield to maturity as follows: y(¢,s) :=
—log(p(t,s))/(s —t). Without loss of generality we can write

J,5) = it BBl s) -
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for some process [3(t,s) such that y(¢,t) = r(¢). Let the dynamics of 5(¢,s), r(t),
and Fi[r(u)] be given by
dB(t,s) = ug(t,s)dt +op(t,s)" dW(t)
dr(t) = p,(t) dt + o,.(t) T dW (t)
dEi[r(u)] = G,(t,u) TdW ().

The strong form of the expectations hypothesis implies 3(t, s) = 0, while the weak
form implies (i) og(t,s) = 0 and (ii) pg(t,s) is a deterministic function of s — ¢.
Sufficient conditions for the weak form to hold are o, and X\ constant. Given the
weak form, we have

dlog(p(t,s)) = (r(t) + pa(t, 3)) dt — (/

Let w(t) := fozotp(t, s)ds be the value of the perpetuity. Applying It6’s lemma to

s

this definition of w(t) produces dw(t)/w(t) = pe(t) dt + o (t) T dW (t), where

/ 5. (t, u) du
u=t

oa(t) = — / Tt s) ( /u T Gt du) ds, (3.15b)

=t =t

s T
or(t,u) du) dW (t).

=t

w(t) =t

00 2
po(t) = (1) — —— +/ wlt, ) {%(t, s)+ % } ds (3.15a)

and where w(t, s) := p(t, s)/w(t).

At this point, we apply the foregoing to the endowment term structure. We
assume (7) € = 0, (i) oy (t) is constant, and (i) o, (¢, u) is a deterministic function
of u —t. These conditions are sufficient to ensure that o,, and A, are constant and
the weak form holds. Given these conditions, we can write (3.15b) for r(t) = re(t)

on(t) = — / : welt, s) ( /u ; Gy (£ 1) du> ds, (3.16)

where we (t, 5) := pe(t, s)/m(t).2} The preceding conditions also ensure that 7, (t,u) =
d1 oz, (t,u), where o5 (t,u) is the volatility of Ey[fi,(u)]. Therefore, given oy(t) =
ox(t)/(n—1), we can write (3.16) as

ou(t) = (1{177) /Sjtwe(t,s) (/u;&\ﬁy(t,u) du> ds. (3.17)

Fory=¢ and y =1/m, d;/(1—n) = 1, while for y = ¢, d1 /(1 —n) = n. Comparing
(3.17) with (3.7) (in which o¢(t) = oy(t)), we see there is a close relationship
between o,(t) and o¢(t) even when 1 # 1 as long as the expectations hypothesis
holds.

21 Note that if the term premium were stochastic, we would have

on(t) = / : we(t, ) ( /u ; 5o (6, 0) + 0, (£, ) du) ds.



24 MARK FISHER AND CHRISTIAN GILLES

Recall that when y = 1/m, i, (t) = r(t) + 3 [[A(¢)]|? and oy(t) = A(t), where r
is the real interest rate. Our assumption that o, is constant implies that dp,(t) =
dr(t), so that o (t,u) = 7,(t,u). Thus for y = 1/m, (3.17) is

ou(t) = / : welt, s) ( /u ; 5.(t,u) du> ds. (3.18)

On the other hand, the volatility of a real perpetuity is given by (3.15b) where
r is interpreted as the real interest rate. Therefore we have established a close
relationship between oy, and —o. They differ only by the weights: w(t,s) versus
w(t, s). However, even when n = 1, the weights do not converge: When n = 1, the
endowment perpetuity weights are we(t,s) = §e~ =99 (see (3.7)), while the real
perpetuity weights are determined by r and A and need not bear any particular
relation to we(t, s). Nevertheless, whenever consumption remains constant we have
me proportional to m, so that the real and endowment term structures are identical.
This situation occurs with 7 = 0 and v = oo and does not require homoskedasticity.
(See the discussion on limit cases below.)??
When y = ¢, (3.17) becomes

ou(t) = / T w(t, s) ( /u ’ Eﬁd)(t,u)du) ds. (3.19)

—t =t

This expression sheds some light on an approximation in Campbell (1993). Rely-
ing on the relation between 1 and ¢ that holds when n = 1 (see (3.7)), Campbell
approximates oy with a weighted average of forecast revisions of y = ¢ in a ho-
moskedastic model. He compares the solutions based on this approximation with
full numerical solutions to the discrete-time version of our model. Equation (3.19)
shows that Campbell’s approximation is essentially exact not just for n = 1, but
also for v + 71 = 2: Along both lines the nuisance terms are absent. The fact that
the result holds on more than one line in the parameter space helps explain why
Campbell’s approximation is as good as it is over such a wide range of parameter
values.

Limit cases. In this section we analyze the model at the limit values of the param-
eter space for intertemporal substitution and risk aversion. We consider the cases
where 17 and «y are zero or infinity. We can identify certain features of the solution
even in cases where we cannot solve the model entirely. We must take care, however:
For a given limit, there may be no equilibrium for arbitrarily chosen dynamics of
a given forcing variable. By examining the limiting values of d; and do in Table 1,
we can rule out certain combinations.

Case 1: n=0.
This corresponds to extreme aversion toward intertemporal substitution.
As indicated in Table 1, this is consistent with solving for equilibrium when
the forcing process is either ¢ or 1/m; but it is inconsistent with solving for
equilibrium in an endowment economy (d; and € are both infinite). In this
case, (2.13) provides a restriction on the consumption process that must be

22Campbell (1993) discusses the relation between the real and endowment perpetuities.
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satisfied. One might think that 7 = 0 would lead to choose a constant rate
of consumption. Instead, we see that fi. = (y — 1) 3 [|oc||®>. It is interesting
to note that if in addition v = 1, the CAPM case, then log consumption is a
martingale.

Case 2: n =0 and v = .

Suppose the agent is extremely risk averse as well as unwilling to substitute.
Table 1 indicates that this is possible only if y = 1/m (there is no equilibrium
with arbitrary technology or endowment). In this case, (2.13) can only be
satisfied if i, = 0. = 0, which means that c(t) is a constant determined by
the initial wealth. Not surprisingly (2.30) shows that the optimal portfolio
is determined entirely by the hedging component: oc4(t) = —oy(t). Since
consumption is constant, r. = r and A = A, so 7(t) is the value of a real
annuity as well as that of an endowment annuity. Finally, given 7 (t) = 1/¢(¢)
when 7 = 0, we have —o(t) = 0x(t). Therefore the optimal portfolio is a real
annuity in this case (a real perpetuity in the infinite-horizon case).??

Case 3: n=0and y=0.

Now, the forcing process must be y = ¢. The agent is unwilling to sub-
stitute consumption across periods but perfectly willing to substitute across
states of nature (risk neutral). The state-price deflator is m(t) = c(t)/p(t),
and from (2.13), we infer that c(t) is a martingale, a fact that has far-reaching
implications in the infinite-horizon case. Because c(t) is a positive martin-
gale, it converges. If technology is such that a constant and strictly positive
asymptotic consumption flow is feasible, then consumption might converge to
such a value. Otherwise, the consumer asymptotically exhausts his wealth and
consumption converges to zero, for any value of the rate of time preference 6.
For example, suppose that j, is constant (even if iy and o4 are not). Then
the solution is 1/7(t) = ¥ (t) = 7(t) = pe, A(t) =0, and o.(t) = o (t) = o4(t).
If 04(t) does not go to zero, then ¢(t) and k(t) both do almost surely (though,
of course, not in the L; norm).

Case 4: v =0.

This is the risk neutrality case, and Table 1 suggests that there is no solution
when y = 1/m. In fact, there is a solution, but in general it involves setting
¢(t) = 0 often, a corner solution that does not satisfy our system of equations
(our solution method assumes positivity of log consumption, and thus rules
out corner solutions). An important point to make, however, is that risk
neutrality of agents does not imply that the price of risk, A(¢), is zero. In light
of equation (2.14b), A = —oy, and thus the condition oy, = 0 must hold for the
price of risk to vanish. But oy, = 0 requires = oo in addition to v = 0. With
standard preferences, of course, v = 0 implies n = oo, so that in such models
risk neutrality indeed implies A\(¢) = 0. (See Case 6 below.)

For example, let y = ¢. If n = 2 then € = 0, in which case, 7.(t) = 260 —uy(t)
and A¢(t) = —o4(t). Therefore, as long as pg4 is not deterministic (and the

23 This point is made by Campbell and Viceira (1996).
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average value of fi4 is less than 20), o, # 0. With n = 2, equation (2.21)
shows that () = 0y(t), so that (2.14b) implies A(t) = —ox(t) # 0.
Case 5: n = 0.
The forcing variable must be consumption. In this case ¥ = 0, since
lim () = lim 070D x(p) /0D g

n—o0 n—o0

regardless of the value of 7(t). Since € = v, we have, equating (3.11) with
(2'19)7 A(t) =7 (Uc(t) - Uw(t))’
Case 6: n =00 and v = 0.

This case inherits all of the properties of Case 5. With v = 0, € = 0, the price
of risk vanishes, A(t) = 0, and, from (3.9a), the interest rate is determined by
the rate of time preference, r(t) = 6. As a result, the expected rate of return
on any asset is equal to 8, and the yield curve is flat at that level.

4. A MARKOVIAN SETTING

In this section we introduce state variables and provide explicit solutions to the
model.

Modeling the dynamics of the forcing process. We suppose there are d Mar-
kovian state variables X driving the exogenous process y, where y is either ¢, ¢, or
1/m. The joint dynamics of X and y are given by

axo) \ _ (mxx@) ,, (oxxor oo
dlog(y(t)) fiy (X (t)) oy (X(1)"

where W' = (W,', W,) is a I-dimensional vector of orthonormal Brownian motions,
with W, (I—1)-dimensional and W), scalar. The dimensions of ox(x) and oy (x) are
respectively [ x d and [ x 1. We assume that the last column of ox ()" is a vector
of zeros, so that the state variables are not affected by Wy: ox(z)" = (Zx(z)" 0),
where ¥ x(z) is (I — 1) x d.2* Note that even if the state variables are deterministic
(ox(z) =0), y can be stochastic; a completely deterministic economy would require
oy(z) =0 as well.

The PDE. We assume that the horizon is finite, treating the case of an infinite
horizon as a limit. We distinguish two cases.

First case: n # 1. We transform the annuity equation (3.10) into a PDE in terms
of a Markovian annuity function IT(x,7) such that where 7(t) = II(X(¢),T — t).
Let I1,, II,,, and II. denote the obvious partial derivatives, and define an operator

24This assumption is without loss of generality. It simply allows for the possibility that there exists
a shock, Wy, that affects y but not X.
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F(x,7,0-) operating on the space of candidate solutions so that?’

~ 1
.7:(33,7', 8]]) =1+ /ZH(a:,T) — (do + d /Ly(.%‘) + dq do 5 ||O'y(.7:)||2) H(x,T)

— 2
1 llom(z,7)|

+d20y($)T5'H(x,T)+(€/d1)§ H(x,T) s

(4.1)
where
1
g (z,7) = I (x,t) px(x) + 5 tr [ax(m)Tax(az) Hm(:n,T)] — I (x,7)
or(x,m) = I (z,7) ox(z).
The PDE to solve is
F(x,1,0IT) = 0 subject to II(x,0) = 0, (4.2)

which is a linear PDE if the nuisance term is zero and quasi-linear otherwise.

—_

Second case: n = 1. We Markovianize (3.1) after changing variable from v to =
through ¢ (t) = exp(=(X(t),T —t)). For this case, the definition of F in (4.1) is
replaced by

F(z,7,05) := 0 (Z(z,7) —log(0)) — fi=(z,7) — q(7) (hy () + d30)

(1—7)
2d4(7')

lg(m) oy (z) + 7= (2, 7)[?  (4.3)
where
fz(z,7) = px(x) " Ep(x,7) + % tr [UX(x)TUX(x) Sz, 7)| — Er(z,7)
oz(2,7) = ox () Zx(z, 7).
In this case, the PDE is
F(z,7,05) = 0 subject to =(x,0) = log(), (4.4)
which is a linear PDE.

A general solution method. Except in a few special cases, closed-form analytic
expressions for the functions I7 and = will not be available. (We will discuss some of
those special cases below.) We describe a solution method that is quite general. The
method generates an approximation to the solution that can be made arbitrarily
accurate. In the limit, the method generates the Taylor series representation of the
solution. The method applies to both the n £ 1 and 1 = 1 cases with any number of
state variables. For expositional simplicity, however, we describe the method with
a single state variable. The generalization is obvious.

Markovian bond-pricing techniques that decompose a PDE into a system of ODEs
can be applied to (4.3), as in Duffie and Epstein (1992a), Duffie, Schroder, and Ski-
adas (1997), and Schroder and Skiadas (1997). These techniques can also be applied
indirectly to (4.1) through the PDE for endowment bond prices when the nuisance

Z5The notation 9- occurring in F is short for all the partial derivative operators that appear in the
PDE.
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term is absent (i.e., when the last term in (4.1) is identically zero). These techniques
decompose a PDE into a system of ODEs by expressing the log of bond prices as a
Taylor polynomial.?6 They have typically been applied where the Taylor expansion
of the solution is finite-order (it is first-order in the Duffie-Kan exponential-affine
class). Our method extends these techniques to the case where the nuisance term
is present in (4.1), producing an infinite system of first-order ODEs. Truncating
this system produces an approximation to the solution. But by including more
equations in the truncated system, the solution can be made arbitrarily accurate.

Bond-pricing techniques, including our extension, owe their tractability to the
fact that the boundary condition is independent of the state variables. For bond
prices the condition is P¢(z,0) = 1, while for the value of an annuity the condition
is II(x,0) = 0. The implicit boundary condition for the value of a perpetuity is
lim; ,o, P¢(z,7) = 0 which again is independent of the state variables.

To apply our method, the following functions of the state variable, called collec-
tively the data, must be real analytic
px(z), ox@) ox(x), ox(x)oy(z), hy(z), and oy(z) oy(z). (4.5)
This assumption is sufficient to guarantee that there exists a unique real analytic
solution II(z,7) for any z in the domain of the functions in the data and any 7 in
a neighborhood of 0 (Cauchy—Kowaleskaya theorem, see Rauch (1991, Chapter 1)).
Therefore, treating 7 as a parameter, we can write the solution as a Taylor series

o0 i
H(z,7) = ZAZ‘(T) (x — x0)?, where A;(1) = W, (4.6)
i=0

where each A; is analytic in 7. This representation is guaranteed to exist in a
neighborhood of 7 = 0, that is, when the horizon is short enough. The derivatives
II,(z,7) and II;;(x,7) can be computed term-by-term in (4.6). In addition

I (z,7) = > A7) (z — z0)’,
=0

where A}(7) denote the derivative with respect to 7, and the boundary condition
can be written

(z,0) =0 = A;(0)=0, fori=0,1,2,....

With the solution I expanded as in (4.6), define F'(z,7) := F(x,7,0II). Then, F
is itself real analytic, so that we can also write it as a Taylor series:
L FO (g, 7 ;
Pla,r) =3 T200T) (o gy (4.7

7!
i=0

where F®) (x0, ) denotes the i-th derivative of F' with respect to z. The unique solu-
tion IT(x,7) is characterized by IT(x,0) = 0 and F(z,7) = 0, so that F® (o, 7) = 0

263ee Duffie and Kan (1996) for a discussion of this technique as applied to the exponential-affine
class of term-structure models. Other models such as those in Constantinides (1992) and Rogers
(1997) can be solved using the same techniques.
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for i =0,1,2,.... These conditions produce a system of first-order ODEs in the co-
efficient functions that (along with the initial conditions) uniquely determine them.
For our approximate solution method, we fix n and we find a polynomial approxi-
mation of order n to II, written as

I, (x,7) = Zam(T) (x — o), where an;(0) =0 fori=0,1,...,n.
=0

We do not claim that a,; = A;, so II,, is not necessarily the truncation of the Taylor
series of IT. Defining a,;(7) := 0 for ¢ > n, the coefficients a,; (for i < n) are found
by replacing A; by a,; for i = 0,1,... ;00 in F(x,7), and then solving the system
of equations F(®) (xg,7) = 0 for i = 0,1,... ,n. Nevertheless, as a consequence of
the assumed analyticity, lim,_ o, an; = A; for all 4.

When our method is applied to (4.4), it delivers exact solutions with a finite
number of terms when the data in (4.5) are polynomial. We illustrate our method
with a sequence of examples.

Bond pricing examples. We begin with the case 7 # 1 and € = 0. In this case
we can write

F(x,7,0II) =1+ HI(JJ,T)Tﬁx(QS) — I (x,7) — R(z) I (z,T)

+ 1 tr [Ux(ﬂf)TO'X(l') sz(gj,T) ) (48)

2
where
R(z) = do +di i () + dy da 5 oy (@) (4.99)
fix(2) = px(2) + dy oy (@) Torx (@) (4.9b)

To evaluate our solution method, it is useful to have an alternative method. In
the present case, one approach to solving (4.2) is to solve the related PDE for
endowment zero-coupon bond prices. Let P¢(z,7) be the price of an endowment
bond with maturity 7, (so p.(t,s) = P¢(X(t),s — t), in the notation of section 2).
The PDE for bond prices is

R(z) = (%)T fix(z) + % tr [‘fx(*"f)T“X(x) (]E:(g:)))} - igi%w)

subject to the boundary condition P¢(x,0) = 1. The solution for IT then is

-
I(z,7)= P¢(z,s)ds. (4.11)
s=0
Note that IT, (x,7) = P°(x,7). A necessary condition for lim, ,, II(x,7) to be
well-defined is lim,_,, P¢(x,7) = 0.
The Taylor expansion for the bond around z = x is given by

< pe() (g T .
Pé(z,7) = Z Po(@0,7) (x — x)".

2!
i=0
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where P®(®)(zq,7) denotes the i-th derivative with respect to z. Given (4.11) we
have
T pe(i)
Ai(T) = ﬂ ds.

s=0 i!

Viewing the annuity as a flow of zero-coupon bonds, then, provides a solution
method. In the present case, this method produces all the coefficients of the Taylor
expansion of II. Many Markovian models of bond prices are of the following form:

log(P*(z,T) Z Bi(7) (z — )",

where N is finite. For the exponential-affine class, where N = 1, the Taylor expan-
sion for the price of a bond is

Z

P¢(z,T) Z (x — z0)".

=0

Even though log(P¢(z, 7)) has a Taylor expansion of finite order, P¢(z,7) does not.
In this case, the Taylor coefficients for the annuity are given by

Ai(r) = / T eme GV BIG) (4.12)

=0 7!

Equation (4.12) will serve as a benchmark in the examples that follow.

Deterministic state variables, n # 1. Consider the following example. The forcing
variable y is stochastic, driven by a single Brownian motion, and its drift and
diffusion depend on a single deterministic state variable, X, in such a way that we
can write

R(z) = Ro + R1 (z — X).
The “risk-adjusted” dynamics of X are given by:
fx(r)=k(X —2) and ox(x)=0.
This is an exponential-affine model where, choosing to expand around zg = X,
Bo(t) =Ro7 and Bi(r) = (Ri/r) (1—e 7). (4.13)
In this case we have

Ay = CV R S ()

7!
=0

1— e—(j k+Ro) T

jk+ Ry

: (4.14)

where (;) is the binomial coefficient. This provides an exact solution for II.
Turning to our power series approximation method, write F(x,7,0II) = 0 as

I (z,7) = 1+ k(X — ) I, (x,7) — R(x) I (z,7) (4.15)
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Substituting into (4.15) the Taylor expansions of IT and its partial derivatives, we
then can write F'(z,7) = 0 as

Ap(m) + Y Ai(r) (@ - X) =
i=1

1-— ROAO(T) — Z {Rl Ai_l(T) + (iH+R0) A,(T)}(x — X)l

i=1
We see that the PDE decomposes into a system of linear ODEs with constant
coefficients, each corresponding to a condition of the form F(®) = 0:

Ap(1) =1 =R Ao(7)
A1) = —R1Ai_1(7) — (is +Ro) Ai(r) fori=1,2,....
Subject to A;(0) =0 for : = 0,1,2,..., system (4.16) has the unique solution given

(4.16)

in (4.14).

Following our solution method, we choose n to specify IT,,(z, 7) and set F®) (z, ) =
0 for i =0,1,... ,n and a,; = 0 for ¢ > n. This produces the following system of
n+ 1 ODEs:

alo(t) =1—TRgao(7)

an;(7) = —Riani-1(1) — (i Kk + Ro) ani(t) fori=1,2,... ,n.

ni

(4.17)

System (4.17) has a unique solution subject to a,;(0) = 0 for ¢ = 0,1,2,... ,n.
Comparing (4.16) with (4.17) we see that an;(7) = A;(7) for ¢ = 0,1,2,... ,n for
all n. This occurs because a/,, does not depend on a, ; for j > ¢, and is not the
general case as we show below.

Increasing the horizon. The Cauchy—Kowaleskaya theorem guarantees the existence
of a solution, but only in a neighborhood of 7 = 0. As the horizon increases, the
value of the annuity converges to the value of a perpetuity, but only if the latter is
well-defined. A sufficient condition for the value of a perpetuity to be well-defined is
that the infinite-horizon asymptotic forward rate exists and is positive. The forward
rate function is given by

fla,7) = —w —Ro+e " Ry (z— X).

For lim, ,o f(z,7) to be well-defined and positive, we need Ry > 0 and s > 0.
When the value of a perpetuity is well-defined, the time derivative in the PDE
vanishes as 7 — oo, in which case

lim Ai(r)=0 fori=0,1,2,....

T—00
Therefore in the limit (4.16) becomes a system of linear algebraic equations:
0=1—-TRyAy(c0) (4.18a)
0="R Ai_l(oo) + (’iH + RO) A,(OO) fori=1,2,.... (4.18b)
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In the infinite-horizon case, then, there is no differential equation to solve; the
solution is found by solving a set of algebraic equations. In the present case, the
form of the general term can be found directly from (4.18) or by specializing (4.14):

-1 ’LRZ
A;(00) = f# (4.19)
[Tic0ir+Ro
The power series for the perpetuity can be written as
Bx)

kB(x)*

where

B
a:=TRo/k, PB(z):=-Ri(x—X)/k, and T'(a,x,f):= /t t* et dt,
=X

where I'(a, x, 8) is the generalized incomplete gamma function.?”

Stochastic state variable. We extend the previous example by allowing a non-zero
volatility for the state variable, though we still assume the nuisance terms are zero.
We let ox(z) = sx \/s(x), where ¢(x) := (1 — a) + az. This volatility function
encompasses both the Gaussian (o = 0) and square-root (o = 1) models. To
simplify notation, we keep the same risk adjusted drift for X. In this case, the series
representation for II(z,7) in F(x, 7,0 IT) produces the following infinite system of
first-order linear ODEs with constant coefficients:

A(T) =1 = Ro Ag(7) + 5% ¢(X) Az (7)
A;(T) =—-R1 Ai—1(7) — (ik + Ro) Ai(7) (4.21)
+ s% (cvci Aig1(T) + (X)) cig1 Aiga(r)) fori=1,2,...

where ¢; = Z;zl j. Note that A; depends on A;;11 and A;1o. Conditional on Ay
and A, we can solve for all of the rest of the functions.

We treat Ay and A; as unknown—they are part of the solution. With a,; re-
placing A;, our method generates a system of ODEs that is formally identical to
the first n 4+ 1 equations in (4.21) except that a,; = 0 for ¢ > n—in particular,
ann+1 = Appnt2 = 0. The result is a system of n 4 1 linear first-order ODEs with

2TFor comparison with expressions in Campbell (1993) note that the first-order approximation to
log(II(z,00)) is

log(IT (2, ) ~ ~ log(Ro) ~ 2 (&~ X),

which shows that IT(z, co)—a weighted average of exponentials—is approximately exponential itself
around X.
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constant coefficients:2®
alo(T) =1 = Ro ano(T) + 5% <(X) ana(7)
ani(1) = =Rian,i—1(7) — (i K + Ro) ani(7)
+ 5% (a Ciani+1(7T) +6(X) cip1 an7i+2(7')) fori=1,2,...,n—2
@ 1(7) = —Riann-2(r) = (n— 1) K+ Ro) ann-1(7) + 5% (@ o1 ann(7))

ann (1) = —Riann-1(7) — (n K& + Ro) ann(7)
(4.22)

System (4.22) (along with the initial conditions a,;(0) = 0) has a unique solution.
For finite n, however, a,; # A;, although lim, ,., a,; = A; for all i. We can
use (4.12) to investigate the convergence of the factor loadings in this case. For
simplicity, let & = 0 so that ¢(x) = 1. In this case, Bi(7) is as given in (4.13), while
sk RI(2KT =3+ e "7 —e 25T
4 K3

Given values for Rg, R1, k, X, and sx, one can compare a,;(7) with A;(7). What
one discovers is that as x approaches zero, holding n fixed, the approximation a,, ; to
the annuity factor loadings .A; worsens. This is due to the fact that A,,,1 and A,
become larger and larger as k — 0, making the approximation a, n4+1 = annt2 =0
worse and worse. Of course as long as endowment bond prices can be computed
directly (as in this example), the series coefficients for the endowment annuity can
be computed by integrating the series coefficients for the bond prices.

Bo(T) = —RoT+

A nuisance term. Adding a nuisance term to the PDE eliminates the possibility of
using bond prices to solve for the value of the annuity, since the endowment interest
rate and the price of endowment risk depend on the volatility of the annuity. (See
(3.11).) Nevertheless, our method allows us to solve the PDE for the value of the
annuity. The presence of the nuisance term introduces nonlinear terms into the
system of ODEs without otherwise changing the character of the problem or its
solution. The additional terms for the first two ODEs in (4.21) are

(E/dl)sgcé (—% g(X)A1(7)2> and

Ao(7)?
1 —c(X)A;(7)®  LA(7)?+2¢(X) AL(7) As(T
s L (SEAE | FAEP + 2600 A0 A |
2 Ao(7) Ao(T)
Our solution method proceeds as before, truncating the system and setting a,; = 0
fori=n+1,n+2,.... The system of ODEs for the functions a,;(7) has a unique

solution (given the initial conditions) that converges on the true solution to the
PDE as n — oo.

As noted above, as the rate of mean reversion decreases, the accuracy of the
Taylor coefficients decreases (holding n fixed). When the nuisance term is present,
we cannot compute endowment bond prices directly. Nevertheless, we can improve

2Some equations may need modification for n < 3.
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the accuracy as follows. We can solve a linear PDE (that is related to the quasi-
linear PDE in a purely formal way) for pseudo endowment bond prices. The Taylor
expansion for these pseudo bond prices can be integrated to provide better ap-
proximations for ann+1 and ap pi2. In particular, we solve (4.10) where P¢(x,7)
is replaced by ﬁe(ﬂf,T), the value of a pseudo endowment bond (since £ # 0). If
the data are such that the Taylor expansion for log(ﬁe(m,T)) is finite order, we
can compute the Taylor expansion for pe (z,7) and integrate it to obtain values for
apn+1 and ap py2 to be used in place of zero in the system of ODEs. This proce-
dure delivers the exact Taylor coefficients if the nuisance term is absent. Moreover
our numerical investigation indicates that when the nuisance term is present, this
procedure delivers significant improvement.

An example where = 1. We now turn to solving (4.4). For this example, we
assume y = ¢, so that

F(z,7,0%) :=0(Z(2,7) —log(0)) — =z, 7) — q(7) po(z)

—(1=7) % lg(r) oc(z) +a=(z,7)[%. (4.23)

For this example, let ux(z) = & (X — z), po(z) = =z,

ox(@)=+v<@) | ], and oc(z) = V() ,
Sc2

where (as before) ¢(z) = (1 — a) + ax.?? In this example the data are first-order
polynomials in z, so the solution is also a first-order polynomial

E(z, 1) = Ao(1) + AL(7) (z — X).
The system of ODEs is
Ap(m) = 0 (log(0) — Ao(7)) + ¢(7) X +<(X) D
Ai(r) = q(r) = (5 +0) Ai(7) + D,
subject to Ag(0) = log(#) and A;(0) = 0, where

Di= (=) 5 ((a(r) sa)* + (alr) sc2 + 52 As())?).

When o # 0 and v # 1, explicit analytical expressions for Ag(7) and A;(7) are
difficult to obtain. (Numerical solutions are easy in any case.) When o = 0, we
have

§(7)

Aufr) = S here g(7) = 1- 07 (1 +q(7) g) . (4.24)

29With o = 1, this example is essentially the term structure example in Duffie and Epstein (1992a),
while with « = 0 it is essentially the term structure example of Duffie, Schroder, and Skiadas (1997)
without the signal extraction problem. (The signal extraction problem puts a trend in s,.)



CONSUMPTION AND ASSET PRICES 35

Note that £(0) = 0 and £{(c0) = 1. Given that oy, = 6= = Ajox, equation (4.24)
implies

Sx

op(t) = [+ {r=n) (4.25)

0

The term structure and the equity premium. Continuing with this example where
a = 0, we investigate the term structure of interest rates and the premium on the
capital account. Inserting (4.25) into (2.39), we have

r(t) = 0+ a(t) + (% -Q(T - t)> (se1 o) + (1 =) %ﬁ_t}

Sacg(T_ t)
AE) = QT —1t)saa+(y—1) —H+9

Q(T —1) se2

When n =1, n(t) = q(T' —t)/0 is deterministic, so that oy (t) = o.(t). Because we
also know from (2.25) that o4(t) = oj(t), we see that the premium on the capital
account is

At) T og(t) = QT — 1) [loc(®)|* + (v — 1) oe(t) "o (1)

The average slope of the term structure at the origin depends on the sign of the
average of A\(t)To,(t) = A(t)Tox(t). (A negative sign produces a positively sloped
term structure.) In this case we have

Sc18:E(T — 1)

A(t) Tog(t) = Q(T —t) (521 + s2) + (v = 1) 5t 0

and

S2ET 1)

)\(t)TUr(t) = )‘(t)TUz(t) = Q(T - t) Scl Sg + (7 - 1) K+ 0

Let us consider two cases. First, suppose s.; = 0, so that the expected growth
rate of consumption is uncorrelated with the actual growth rate (o,(t)To.(t) = 0).
In this case, the premium on the capital account is unambiguously positive and
increases with 7, while the slope of the average yield curve depends on «y (the slope
is positive if v < 1, negative otherwise). An increase in -y reduces both the interest
rate and the average slope of the yield curve at the origin. Second, suppose v = 0, so
that the agent is risk neutral and has a preference for late resolution of uncertainty.
Suppose also that the horizon is infinite; in this case, the sign of the premium on
the capital account is determined by the sign of the covariance between expected
and actual growth rates of consumption, while the yield curve unambiguously slopes
upward on average at the origin.
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Existence and convergence: An example. Although the Cauchy—Kowaleskaya
theorem guarantees a unique solution exists in the neighborhood of 7 = 0, it does
not guarantee the existence of a solution for all finite 7, not does it guarantee, even
when a solution exists for all finite 7, that the solution converges as 7 — oco. To
begin to address these issues, consider the case where the nuisance term is absent.
In this case, r.(t) = Re(X(t)) and Ae(t) = Ae(X (2)), where

Re(z) = do + dy iy (z) — d |loy(z)||*> and A.(z) = d; oy (x),
where we have used dy = —d;. If
R.(z), px(z)—ox(x) Ac(z), and ox(z) ox(z)

are all affine in z, then we have an exponential-affine model of endowment bond
prices. For example, suppose there are three Brownians and two independent state
variables, each of which has dynamics given by

dXZ‘ (t) = K; (Xz — Xi (t)) dt + Si gz(Xz) dWi(t),

where® ¢;(z) = (1 — a) X; + ax, so that

B S1 Cl(.%‘l) 0
K1 (Xl - 931)
px(z) = ~ and ox(z) = 0 524/S2(x2)

Now further suppose that we are solving the planning problem. We choose a
one-factor model of the term structure and allow the second factor to affect the
equity market. In particular, r(t) = R(X(¢)) and A(t) = A(X(¢)), where

.
R(z) =21 and A(z)= (l“ V;ll(xl) 0 2 V;;(‘”Z)) .

Note that

ox(#)TAE) = (grai(e1) 0) -

ensuring that X5 does not affect real bond prices. Turning to the PDE for n # 1,
note that gy (z) = R(z) + % |A(2)[|* and oy (z) = A(z).
First consider the case where oo = 0. In this case

1 - _
Re(z) = (1 —n)z1+n0+n(1 —77)5 (X4 4 /st —i—ng%/s%).

Although the parameters of the dynamics of the second state variable appear, the
second state variable itself does not. In fact, the model devolves to a single-state-
variable model in this case. We observe that if R.(X) < 0 then the solution will
not converge, since the value of a perpetuity is not defined in this case. There is

however a more telling condition. We can solve for the asymptotic rate. If it is not

30The definition of (- ) here is slightly different from the definition in the previous section.
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positive, the solution will not converge. The asymptotic forward rate can be shown
to be

— (1—77)2Xl 32+2//{,1ql
K1

Consider the parameters be given in Table 2 for example.?! With these parameters
the solution will not converge for n > 1.6218.

i X Ki s? qi

7

1 3/100 1/15 1/50 —11/75
2 1/100 3/500 1/2500 —1/50

TABLE 2. Parameter values.

Now consider the case where @ = 1. In this case, we have

(1—m) (gt +2st) e (L—n)(ngd)
252 * 2 53 '
51 52
Here we have the following problem. If one or both of the coefficients on the state
variables in R.(z) is negative, there may not be a solution for all finite 7. In the
present case, we run into problems as soon as 1 > 1.

When a nuisance term is present we cannot determine in advance the regions of
existence and convergence because the endowment interest rate and price of risk are
not known absent the solution for the value of the endowment annuity. Nevertheless,
we believe the considerations are essentially the same. In closing, we note that our
preliminary numerical investigations indicate that when o = 1 solutions do not exist
for all finite horizons when 7~y 1.32

Re.(x) =n6+

5. CONCLUSION

Summary. In a nutshell, we we have made two complementary but independent
contributions to asset pricing theory under recursive preferences—the first theoreti-
cal and the second numerical. On the theoretical front, we present a representation
of continuation utility that reduces the general-equilibrium problem to a bond pric-
ing problem. On the numerical front, we extend the class of Markovian models for
which we can find the term structure of interest rates in terms of the state variables.

For any parameter values and any process for the forcing variable, we reduce
the solution (as long as a solution exists) to that of finding bond prices under a
derived process for the interest rate and price of risk, via a standard PDE. But this

31These parameter values are for illustrative purposes only; we have not attempted to calibrate the
model to actual data. Nevertheless, the parameters for X; are representative of the estimates of
Brown and Schaefer (1996) for the real term structure.

32 As noted in the Introduction, we intend to include a numerical investigation in a future version of
this paper. In the meantime, we have included a complete Mathematica package that implements
of method.
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transformation of the original problem into that of a term-structure problem would
only carry us so far, if we did not know how to solve the resulting PDE. Duffie and
Kan (1996) show how to solve the bond pricing PDE for the class of exponential-
affine term-structure model by breaking it into a finite set of ordinary differential
equations (one for each of the state variables, plus one for the constant term) that
can be numerically solved in a fraction of a second on any modern computer. We
show that as long as the dynamics of the forcing variables are sufficiently smooth
(but not necessarily affine) the equilibrium-based annuity PDE also breaks down
into a set of ODEs, though the set may be infinite. Solving all of these equations
provides an exact solution, while solving for a finite number provides an approximate
solution.

Further research. Notwithstanding some existing claims, we are not yet con-
vinced that the framework of recursive preferences cannot rationalize the major
asset-price puzzles. In our view, a complete and thorough examination has been
hampered by the lack of tractable tools that would allow an unrestricted exploration.
Most of the model-building work in this area has been conducted in a discrete-time
setting where the number and, perhaps more importantly, the nature of shocks has
been limited. Moreover, there has been the tendency to equate the horizon for the
short-term risk-free interest rate with the sampling frequency of the consumption
growth data.

Therefore, in our view, the empirical results that bear on the ability of a model
such as we have focused on in this paper to resolve asset pricing puzzles is mixed.
On the one hand, Cochrane and Hansen (1992) provide evidence that recursive pref-
erences are consistent with the unconditional moments of the data. On the other
hand, the attempts to build models consistent with the conditional moments have
failed thus far. For example, Weil (1989) reaches the negative conclusion that the
equity premium puzzle remains for reasonable values of the preference parameters.
In his setting for the exchange problem, however, the shocks are homoskedastic.
Yet heteroskedasticity, for example, might prove important for resolving the equity-
premium puzzle, which stems from the inability of the model to generate sufficient
volatility of the wealth-consumption ratio. If the term premium in (3.14) is sto-
chastic rather than deterministic, then the volatility of a perpetuity depends on the
volatility of the term premium as given in footnote 21. Depending on the covari-
ance between endowment interest rate and the term premium, &, (t,u)' og, (t,u),
the relative variance of the wealth-consumption ratio, ||o,(#)||?, may be bigger in
an economy with state-dependent volatilities than in an economy in which the ex-
pectations hypothesis holds for the endowment term structure.

Our continuous-time formulation of the model provides significant advantages
over discrete-time formulations in that we have available both the tools of stochas-
tic calculus that allow us to manipulate expressions and the solution techniques for
differential-equations. Any serious calibration attempt, however, will require care
in matching moments with the data. Although matching moments for asset prices
may be fairly straightforward, matching moments for consumption growth will re-
quire some effort. In particular, we have no closed-form solutions for consumption
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growth-rates over discrete time periods in general. These must be computed from
simulations given the parameters of the instantaneous dynamics. Yet this very dif-
ficulty provides some additional hope that the model may fit tolerably well, since
the link between the instantaneous dynamics and the finite-horizon dynamics may
contain the needed flexibility.

We cannot claim that the framework of recursive preferences will turn out to be
compatible with all of the major known asset-pricing puzzles. But we can claim
to have provided some tools that will be prove useful for a thorough study of the
question. In future research, we intend to pursue this study.

APPENDIX A. THE ABSENCE OF ARBITRAGE

The state-price deflator. We adopt the stochastic framework studied in Duffie
(1996), to which we refer the reader for all omitted details. We restrict attention
to a Brownian environment, by which we mean that we are given a [-dimensional
vector of orthonormal Brownian motions, W (t), defined on a fixed probability space,
and the filtration is that generated by W (t). In other words, the information that
agents have at time ¢ is that contained in the path of W (s) for s < ¢.

We assume the existence of a state-price deflator, which follows a strictly positive
It6 process m(t) that we write as:

dm(t) T
mt) r(t)dt — A(t) ' dW (t), (A1)

where “T” denotes the transpose, r(t) is the instantaneous rate of interest and A(t)
is the price of risk. Observe that we are free to model r(¢) and A(¢) independently,
as long as a solution to (A.1) exists.3

A state-price deflator m(t) guarantees that asset prices are free of arbitrage pos-
sibilities. The price of any asset (expressed in a given unit of account) is determined
by the formula that its deflated gain is a martingale. To see what this means, con-
sider an asset with cumulative dividend D(t) and value V'(t), both It6 processes.
For simplicity of exposition, assume that V(t) is strictly positive and that D(t) is
locally riskless, so their processes can be written as:

Cifv—(g) =py(t)dt +oy(t)TdW(t), and dD(t) = Z(t)dt,

where Z(t) is the flow of dividends. The gain is the sum of the asset’s value and
its cumulative dividend, G(t) := V (t) + D(t), while the deflated gain is G(t)m(t).
To say that G(¢)m(t) is a martingale is equivalent to saying that the price process

V(t) obeys
V() = B, [(%) V(T) + / :t (Z((‘:D Z(s) ds] , (A2)

33In the example given in Cox, Ingersoll, Jr., and Ross (1985b), the solution to (A.1) does not
exist.
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for any T > t, where E; stands for the expectation conditional on time-t information.
A direct implication of the pricing equation (A.2) is the no-arbitrage condition:

v (8) +C(t) = () + M) Tov (D), (A.3)
where ((t) := Z(t)/V(t) is called the dividend rate.

Changing the numeraire. Two kinds of assets play important roles in the se-
quel: zero-coupon bonds and assets that pay a continuous flow of dividends forever.
Starting with zero-coupon bonds, let p(¢,7") denote the price at time ¢ of the bond
paying one unit of account at time 7". According to the pricing formula (A.2), the
terminal condition p(T,T) = 1 implies

ey 5[0

m(t)

so that the term structure theory reduces to the problem of producing conditional
forecasts of the state-price deflator. Turning to the case of an asset that pays a
continuous dividend flow Z(t) forever, the pricing formula (A.2) implies that its

price process obeys
V() = B [ / : ZS; Z(s)ds} , (A.4)

assuming limr_,o, E¢[m(T)V(T)] = 0. We now show that a change of numeraire
transforms V' (¢) into the price of a consol. Changing numeraire is thus often con-
venient, not only to study both real and nominal (or foreign and domestic) yield
curves, but also to turn many other asset pricing problems into term structure
problems.

To illustrate, let b(¢,T") denote the value of a claim to the single strictly positive
payment of S(7T') at time 7', so that

m(T)
b(t, T)=E; | —= S(T)]| .
0.1) = £ |28 ()
We can think of this asset as a zero-coupon bond that makes its payment in a
different “currency.” Define bg(t,T) := b(t,T)/S(t) to be the value of the bond
in the new currency units, and let mg(t) := m(t) S(t); then, the pricing equation
above becomes

_ ms(T)]
bs(t,T) = E; [ms(t) , (A.5)
which we recognize as the value of a zero-coupon bond when mg(t) replaces m(t)
as the state-price deflator.

In general, given the choice of any strictly positive Itd process S(t) as the new
numeraire, mg(t) := m(t) S(t) defines a new state-price deflator. Gains that are
measured in the new units, G(t)/S(t), and deflated by the new deflator are martin-
gales. Since mg(t) is a state-price deflator, its drift and diffusion are (minus) the
short rate, rg, and price of risk, Ag, in the new units, and we are free to model rg
and Ag independently (as long as the Ité process they define exists). Moreover, we
are free to model independently any two of the processes m(t), mg(t), and S(t),



CONSUMPTION AND ASSET PRICES 41

leaving the third process to inherit the dynamic properties of the other two from
the definition mg = m S.

If the original units are those of a consumption good and S(t) is the real value of
a unit of currency (so that 1/S(¢) is the price level), then bg(¢,T") given in equation
(A.5) is the nominal value of a zero-coupon currency-denominated bond, and b(t,T')
is its real value.

We apply this change-of-numeraire technique to infinitely-lived assets in two ways.
In the first case, we set S(t) = V/(¢), the strictly positive price process for an asset
with dividend flow Z(t). The new state-price deflator is my (t) := m(t) V (¢), whose
dynamics, by It6’s lemma and the absence-of-arbitrage condition (A.3), are

IO ey ar - ()~ ov )T aw (), (A6)

my (t)
so that the short rate and price of risk are ry(¢) = ((t) and Ay () = A(t) — oy (¢).
In the second case, we set S(t) = Z(t), so that the new state-price deflator is
myz(t) == m(t)Z(t) (here we require that the dividend Z(t) be strictly positive).
The value of the asset in the new units is Vz(t) := V(¢)/Z(t) = 1/{(t). Let bz (¢, T)
denote the value (in Z units) of a zero-coupon bond paying Z(T') (i.e., one Z unit)
at time 7. With the foregoing definitions equation (A.4) produces

%zVZ(t):Et[:jmz } /bzts (A7)

Thus, the inverse of the dividend rate, 1/{(t), is the value of a consol, which has a
unit dividend flow and a yield of ((¢) (measured in the new units).

APPENDIX B. Mathematica CODE

Here is the Mathematica package used to compute the PDE solutions in the
paper.
(* :Title: AnnuitySolve.m *)

(* :Context: AnnuitySolve‘ *)

(* :Author: Mark Fisher *)

(* :Summary:

In an economy where the representative agent has recursive preferences
(Kreps-Porteus stochastic differential utility), the optimal
wealth-consumption ratio is the value of an annuity that satisfies a
quasi-linear 2nd-order PDE. This package provides tools to compute the
series solution to the PDE.

*)

(* :Package Version: 1.0 (August 1998) x*)

(* :Mathematica Version: 3.0 *)

(* :Sources:
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Fisher, M. and C. Gilles (1998) "Consumption and asset prices with
recursive preferences." Photocopied, Federal Reserve Board.

*)

(* :Discussion:

NAnnuitySolve is designed to compute the series solution to a
quasi-linear 2nd-order PDE in terms of an unknown function Al[x,t],
where the data are real analytic and where the boundary condition is
of the form A[x,0] == C, for C constant. For an annuity, C == 0, while
for a zero-coupon bond, C == 1. The Cauchy-Kowaleskaya theorem
guarantees the existence of a unique real analytic solution in the
neighborhood of t == 0. The solution provided by NAnnuitySolve is of
the form Sum[a[i] [t] (x-x0)~i, {i, O, order}] where the ali] [t] are
functions of t. The boundary condition is specified indirectly via the
option InitialCondition -> C, which imposes the condition a[0][0] ==
(along with a[i][0] == 0 for i >= 1). For exponential-polynomial bond
prices, the option FunctionalForm -> Exp allows one to solve for
Log[A[x,t]] subject to al[0][0] == 0.

*)

(* :Requirements: Utilities‘FilterOptions‘ *)

(* :Examples:
For examples, see the notebook AnnuitySolveExamples.nb, which is
available from the author upon request.

*)
BeginPackage ["AnnuitySolve‘", {"Utilities‘FilterOptions‘"}]

AnnuitySolve: :usage = "AnnuitySolve[pde, A, t, {x, x0}, order]
calculates a symbolic series solution for the pde to the order
specified, where A is an unknown function of x and t. It expands a
polynomial of factor loadings in t around the point x0. Multiple state
variables can be specified as in AnnuitySolve[pde, A, t, {x, x0}, {y,
y0}, order]. As specified, AnnuitySolve returns a pure function; if A
is replaced by Aloutargs], AnnuitySolve returns the function evaluated
at outargs. AnnuitySolve has the options FunctionalForm and
InitialCondition. In addition, options can be passed to DSolve."

NAnnuitySolve: :usage = "NAnnuitySolve[pde, A, {t, min, max}, {x, x03},
order] calculates a numerical series solution for the pde to the order
specified, where A is an unknown function of x and t. It expands a
polynomial of factor loadings in t around the point x0. Multiple state
variables can be specified as in AnnuitySolve[pde, A, {t, min, max},
{x, %0}, {y, y0}, order]. As specified, NAnnuitySolve returns a pure
function; if A is replaced by Aloutargs], NAnnuitySolve returns the
function evaluated at outargs. NAnnuitySolve has the options
FunctionalForm, InitialCondition, FactorLoadingSymbol,
PolynomialOrderDifferential, and Differentialloadings. In addition,
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options can be passed to NDSolve."

BondToAnnuitySeries: :usage = "BondToAnnuitySeries[bond, t, {x, x0},
order] takes an expression for zero-coupon bond prices as a function
of x and t and returns series coefficients (as functions of t that
have been symbolically integrated) up to the order specified for the
associated annuity. Multiple state variables can be specified as in
BondToAnnuitySeries[bond, t, {x, x0}, {y, y0}, order]. Options can be
passed to Integrate."

NBondToAnnuitySeries: :usage = "NBondToAnnuitySeries[bond, {t, min,
max}, {x, x0}, order] takes an expression for zero-coupon bond prices
as a function of x and t and returns series coefficients (as functions
of t that have been numerically integrated) up to the order specified
for the associated annuity. Multiple state variables can be specified
as in NBondToAnnuitySeries[bond, {t, min, max}, {x, x0}, {y, yO},
order]. The output is designed to be used with the option
DifferentialLoadings (in conjunction with PolynomialOrderDifferential)
for NAnnuitySolve. Options can be passed to NDSolve."

AbsValuePDE: :usage = "AbsValuePDE[pde, A, soln] returns the absolute
value of the deviations of the PDE from zero (as a pure function),
where the function A has been replaced by the trial solution. The
function is useful for determining how well the PDE is satisfied.
AbsValuePDE[pde, Alargs], soln] returns the function evaluated at

args. "

FunctionalForm: :usage = "FunctionalForm is an option for AnnuitySolve
and NAnnuitySolve. The default setting is FunctionalForm -> Identity.
The setting FunctionalForm -> Exp can be used to solve for
exponential-polynomial bond prices."

InitialCondition::usage = "InitialCondition is an option for
AnnuitySolve and NAnnuitySolve. It specifies the value of the
zero-order factor loading function at t = 0. The default setting for
NAnnuitySolve is InitialCondition -> 107-100, which avoids division by
zero when the PDE is quasi-linear."

PolynomialOrderDifferential: :usage = "PolynomialOrderDifferential is
an option for NAnnuitySolve. The default setting is
PolynomialOrderDifferential -> 0. This option is used in conjunction
with the option Differentialloadings. Typically for this purpose the
setting would be PolynomialOrderDifferential -> 2."

Differentialloadings::usage = "Differentialloadings is an option for
NAnnuitySolve. The default setting is Differentialloadings -> {}. This
option is used in conjunction with the option
PolynomialOrderDifferential. Typical use would involve computing
exponential-polynomial bond prices (using NAnnuitySolve with
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FunctionalForm -> Exp), and then calling NBondToAnnuitySeries, the
output of which would be used as the DifferentiallLoadings."

FactorLoadingSymbol: :usage = "FactorLoadingSymbol is an option for
NAnnuitySolve. It is used to coordinate passing the output of
NBondToAnnuitySeries to NAnnuitySolve via the option
Differentialloadings. The default setting is FactorLoadingSymbol ->
$a, which need not be changed unless there is a symbol conflict."

$a::usage = "$a is the symbol for the factor loadings."

MakeCoefficients::usage = "MakeCoefficients[order, n] is an auxiliary
function, called by other functiomns."

MakePolynomial: :usage = "MakePolynomial[xvars, t, coeffs] is an
auxiliary function, called by other functions."

Begin[" ‘Private‘"]

AnnuitySolve: :badargs = "The arguments to the function in the PDE are
not properly specified."

Options[AnnuitySolve] = {FunctionalForm -> Identity,
InitialCondition -> 0}

AnnuitySolve[pde_Equal, A_Symbol, t_Symbol, xargs:{_Symbol, _}..,

order_Integer?Positive, opts___70ptionQ] :=

Module[{ff, icO, fls, dopts, x, x0, n, arglist, args, coeffs, a, poly,
polyeqn, seriesargs, le, initconds, odes},

{ff, ic0} = {FunctionalForm, InitialCondition} /. {opts} /.
Options[AnnuitySolve];

fls = FactorLoadingSymbol /. {opts} /. Options[NAnnuitySolve];

dopts = FilterOptions[DSolve, opts];

{x, x0} = Transpose[{xargs}];

n = Length[x];

arglist = Union @ Cases[pde, f_[Al[x__]1 | Alx__]1 :> {x}, Infinity];

args = First @ arglist;

If [Length[arglist] != 1 || Union[args] =!= Union[Join[x, {t}]],
Message [AnnuitySolve: :badargs]; Return[$Failed]];

coeffs = MakeCoefficients[order, n, fls];

poly = MakePolynomial[x - x0, t, coeffs];

polyeqn = (Subtract @@ pde) /. A -> Function @@ {args, ff @ poly};

seriesargs = Sequence Q@@ Thread[{x, x0, order}];

le = List @@ LogicalExpand[Series[polyeqn, seriesargs] == 0];

initconds = Thread[
Through[coeffs[0]] == Prepend[Table[0, {Length[le] - 1}], icO]
1;

odes = Join[le, initconds];

Function @@ {args, ff @ poly /.
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( First @ DSolvelodes, coeffs, t, Evaluatel[dopts]] )}

AnnuitySolve[pde_Equal, A_Symbol[outargs__], t_Symbol,
xargs:{_Symbol, _}.., order_Integer?Positive, opts___70ptionQ]
AnnuitySolvel[pde, A, t, xargs, order, opts][outargs]

Options[NAnnuitySolve] = {FunctionalForm -> Identity,
InitialCondition -> 10°-100, PolynomialOrderDifferential -> O,
DifferentiallLoadings -> {}, FactorLoadingSymbol -> $a}

NAnnuitySolve[pde_Equal, A_Symbol,
range:{t_Symbol, tmin_?NumericQ, tmax_7NumericQ},
xargs:{_Symbol, _?NumericQ}.., order_Integer?Positive,
opts___70ptionQ] :=

Module [{ff, icO, diff, diffloads, fls, ndopts, x, x0, n,
arglist, args, allcoeffs, coeffs, poly, polyeqn, seriesargs,
le, initconds, odes},

{ff, ic0, diff, diffloads, fls} = {FunctionalForm,
InitialCondition, PolynomialOrderDifferential,
DifferentialLoadings, FactorLoadingSymbol} /. {opts} /.
Options[NAnnuitySolve];

ndopts = FilterOptions[NDSolve, opts];

{x, x0} = Transpose[{xargs}];

n = Length[x];

arglist = Union @ Cases[pde, f_[Al[x__]1 | Alx__]1 :> {x}, Infinity];

args = First @ arglist;

If [Lengthlarglist] != 1 || Union[args] =!= Union[Join[x, {t}]],
Message [AnnuitySolve: :badargs]; Return[$Failed]];

allcoeffs = MakeCoefficients[order + diff, n, fls];

coeffs = Select[allcoeffs, ( Max @@ # ) <= order &];

diffloads = Select[diffloads, ( Max @@ #[[1]] ) > order &];

poly = MakePolynomial[x - x0, t, allcoeffs] /. diffloads;

polyeqn = (Subtract @@ pde) /. A -> Function @@ {args, ff @ poly};

seriesargs = Sequence Q@@ Thread[{x, x0, order}];

le = List @@ LogicalExpand[Series[polyeqn, seriesargs] == 0];

initconds = Thread[

Through[coeffs[0]] == Prepend[Table[0, {Length[le] - 1}], icO]
1;

odes = Join[le, initconds];

Function @@ {args, ff @ poly /.

( First @ NDSolve[odes, coeffs, range, Evaluate[ndopts],
StartingStepSize -> 107-6, MaxSteps -> 1076] ) }

NAnnuitySolve[pde_Equal, A_Symbol [outargs__],
range:{t_Symbol, tmin_?NumericQ, tmax_?NumericQ},
xargs:{_Symbol, _?NumericQ}.., order_Integer?Positive,
opts___70ptionQ] :=
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NAnnuitySolvel[pde, A, xargs, order, range, opts] [outargs]

BondToAnnuitySeries[bond_, t_Symbol, xargs:{_Symbol, _}..,

order_Integer?Positive, opts___70ptionQ] :=

Module[{fls, iopts, x, x0, n, seriesargs, ser, sercoeffs,
g, loadings},

fls = FactorLoadingSymbol /. {opts} /. Options[NAnnuitySolvel];

iopts = FilterOptions[Integrate, opts];

{x, x0} = Transpose[{xargs}];

n = Length[x];

seriesargs = Sequence Q@ Thread[{x, x0, order}];

ser = Series[bond, seriesargs];

sercoeffs = SeriesTable[ser, order, nl;

loadings = Integrate[sercoeffs /. t -> s, {s, 0, t}, Evaluate[iopts]];

Thread [MakeCoefficients[order, n, fls] -> (Function[t, #]& /@ loadings)]

]

NBondToAnnuitySeries::badbond = "The expression for the value of the
bond is not numeric."

NBondToAnnuitySeries[bond_,
range:{t_Symbol, tmin_?NumericQ, tmax_7NumericQ},
xargs:{_Symbol, _?NumericQ}..,
order_Integer?Positive, opts___70ptionQ] :=
Module[{fls, ndopts, x, x0, n, seriesargs, ser, sercoeffs,
loadings, g},
fls = FactorLoadingSymbol /. {opts} /. Options[NAnnuitySolvel];
ndopts = FilterOptions[NDSolve, opts];
{x, x0} = Transpose[{xargs}];
If[!'NumericQ[bond /. Thread[x -> x0] /. t —> (tmax + tmin)/2],
Message [NBondToAnnuitySeries: :badbond] ; Return[$Failed]];
n = Length[x];
seriesargs = Sequence 0@ Thread[{x, x0, order}];
ser = Series[bond, seriesargs];
sercoeffs = SeriesTable[ser, order, n];
loadings = (g /. First @ NDSolve[{g’[t] == #, g[0] == 0},
g, range, Evaluate[ndopts], StartingStepSize -> 107-6,
MaxSteps -> 107°6])& /@ sercoeffs;
Thread[MakeCoefficients[order, n, fls] -> loadings]

]

AbsValuePDE[pde_Equal, A_Symbol, soln_] :=
Module[{arglist, args},
arglist = Union @ Cases[pde, f_[Al[x__]1 | Alx__]1 :> {x}, Infinity];
If [Length[arglist] != 1, Message[AnnuitySolve::badargs]; Return[$Failed]];
args = First @ arglist;
Function @@ {args,
Abs[Subtract @@ pde] /. A -> Function @@ {args, soln}}]
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AbsValuePDE [pde_Equal, A_Symbol [outargs
AbsValuePDE[pde, A, soln] [outargs]

], soln_] :=

(* auxiliary functions *)
MakeCoefficients[order_, n_, sym_:$a] :=
Module [{b},
Flatten @
Table[sym @@ Array[b, n],
Evaluate[ Sequence @@ Thread[{Array[b, n], 0, order}] ]
]
]

MakePolynomial [xvars_List, t_, coeffs_List] :=
Apply[Times, xvars™# & /@ (coeffs /. $a -> List), {1}].Through[coeffs[t]]

(* this is a kludge; SeriesCoefficient[series, {nl, n2, ...}] doesn’t work *)
SeriesTable[series_, order_, n_] :=
Flatten @ Fold[
Map[Table[SeriesCoefficient [#, i], {i, 0, order}]&, #1, {#2}]&,

series,
Range[0, n - 1]
]

End[]

EndPackage []
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